A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females

Abstract

Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.

Data availability

Source Data files for all figures are available online:http://dx.doi.org/10.17632/5rz28jr8gc.1Grunwald Kadow, Ilona (2022), "Boehm et al. (A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females)", Mendeley Data, V1, doi: 10.17632/5rz28jr8gc.1

The following data sets were generated

Article and author information

Author details

  1. Ariane C Boehm

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  2. Anja B Friedrich

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  3. Sydney Hunt

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  4. Paul Bandow

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  5. K P Siju

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  6. Jean-Francois De Backer

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2861-9994
  7. Julia Claussen

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  8. Marie-Helen Link

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6065-2057
  9. Thomas F Hofmann

    ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  10. Corinna Dawid

    ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  11. Ilona C Grunwald Kadow

    Faculty of Medicine, University of Bonn, Bonn, Germany
    For correspondence
    ilona.grunwald@tum.de
    Competing interests
    Ilona C Grunwald Kadow, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9085-4274

Funding

European Research Council (ERC StG FlyContext)

  • Anja B Friedrich
  • Sydney Hunt
  • K P Siju
  • Julia Claussen
  • Ilona C Grunwald Kadow

Deutsche Forschungsgemeinschaft (GR4310/5-1)

  • Ariane C Boehm
  • Paul Bandow

Deutsche Forschungsgemeinschaft (CRC870,A04)

  • K P Siju

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Boehm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,214
    views
  • 451
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ariane C Boehm
  2. Anja B Friedrich
  3. Sydney Hunt
  4. Paul Bandow
  5. K P Siju
  6. Jean-Francois De Backer
  7. Julia Claussen
  8. Marie-Helen Link
  9. Thomas F Hofmann
  10. Corinna Dawid
  11. Ilona C Grunwald Kadow
(2022)
A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females
eLife 11:e77643.
https://doi.org/10.7554/eLife.77643

Share this article

https://doi.org/10.7554/eLife.77643

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.