Multiple preferred escape trajectories are explained by a geometric model incorporating prey's turn and predator attack endpoint

  1. Yuuki Kawabata  Is a corresponding author
  2. Hideyuki Akada
  3. Ken-ichiro Shimatani
  4. Gregory Naoki Nishihara
  5. Hibiki Kimura
  6. Nozomi Nishiumi
  7. Paolo Domenici
  1. Nagasaki University, Japan
  2. The Institute of Statistical Mathematics, Japan
  3. CNR-IAS, Italy

Abstract

The escape trajectory (ET) of prey - measured as the angle relative to the predator's approach path - plays a major role in avoiding predation. Previous geometric models predict a single ET; however, many species show highly variable ETs with multiple preferred directions. Although such a high ET variability may confer unpredictability to avoid predation, the reasons why animals prefer specific multiple ETs remain unclear. Here, we constructed a novel geometric model that incorporates the time required for prey to turn and the predator's position at the end of its attack. The optimal ET was determined by maximizing the time difference of arrival at the edge of the safety zone between the prey and predator. By fitting the model to the experimental data of fish Pagrus major, we show that the model can clearly explain the observed multiple preferred ETs. By changing the parameters of the same model within a realistic range, we were able to produce various patterns of ETs empirically observed in other species (e.g., insects and frogs): a single preferred ET and multiple preferred ETs at small (20-50°) and large (150-180°) angles from the predator. Our results open new avenues of investigation for understanding how animals choose their ETs from behavioral and neurosensory perspectives.

Data availability

The datasets (Dataset1-5) of the escape response in P. major, used for statistical analysis and figures, and the R code (Source code 1-3) for the mathematical model, statistical analysis, and figures are available in Figshare: https://figshare.com/s/bea4ee4e7f7664ccd80c.

The following data sets were generated

Article and author information

Author details

  1. Yuuki Kawabata

    Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
    For correspondence
    yuuki-k@nagasaki-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8267-5199
  2. Hideyuki Akada

    Faculty of Fisheries, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Ken-ichiro Shimatani

    The Institute of Statistical Mathematics, Tachikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Gregory Naoki Nishihara

    Institute for East China Sea Research, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Hibiki Kimura

    Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3710-2564
  6. Nozomi Nishiumi

    Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Paolo Domenici

    CNR-IAS, Oristano, Italy
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (Grants-in-Aid for Young Scientists B,17K17949)

  • Yuuki Kawabata

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas,19H04936)

  • Yuuki Kawabata

Sumitomo Foundation (Grant for Environmental Research Projects,153128)

  • Yuuki Kawabata

ISM Cooperative Research Program (2014-ISM.CRP-2006)

  • Yuuki Kawabata
  • Ken-ichiro Shimatani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian Rutz, University of St Andrews, United Kingdom

Ethics

Animal experimentation: The animal care and experimental procedures were approved by the Animal Care and Use Committee of the Faculty of Fisheries (Permit No. NF-0002), Nagasaki University in accordance with the Guidelines for Animal Experimentation of the Faculty of Fisheries and the Regulations of the Animal Care and Use Committee, Nagasaki University.

Version history

  1. Preprint posted: April 29, 2020 (view preprint)
  2. Received: February 8, 2022
  3. Accepted: February 13, 2023
  4. Accepted Manuscript published: February 15, 2023 (version 1)
  5. Version of Record published: March 31, 2023 (version 2)

Copyright

© 2023, Kawabata et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,339
    Page views
  • 226
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuuki Kawabata
  2. Hideyuki Akada
  3. Ken-ichiro Shimatani
  4. Gregory Naoki Nishihara
  5. Hibiki Kimura
  6. Nozomi Nishiumi
  7. Paolo Domenici
(2023)
Multiple preferred escape trajectories are explained by a geometric model incorporating prey's turn and predator attack endpoint
eLife 12:e77699.
https://doi.org/10.7554/eLife.77699

Share this article

https://doi.org/10.7554/eLife.77699

Further reading

    1. Ecology
    Yongzhi Yan, Scott Jarvie, Qing Zhang
    Research Article

    Habitat loss and fragmentation per se have been shown to be a major threat to global biodiversity and ecosystem function. However, little is known about how habitat loss and fragmentation per se alters the relationship between biodiversity and ecosystem function (BEF relationship) in the natural landscape context. Based on 130 landscapes identified by a stratified random sampling in the agro-pastoral ecotone of northern China, we investigated the effects of landscape context (habitat loss and fragmentation per se) on plant richness, above-ground biomass, and the relationship between them in grassland communities using a structural equation model. We found that habitat loss directly decreased plant richness and hence decreased above-ground biomass, while fragmentation per se directly increased plant richness and hence increased above-ground biomass. Fragmentation per se also directly decreased soil water content and hence decreased above-ground biomass. Meanwhile, habitat loss decreased the magnitude of the positive relationship between plant richness and above-ground biomass by reducing the percentage of grassland specialists in the community, while fragmentation per se had no significant modulating effect on this relationship. These results demonstrate that habitat loss and fragmentation per se have inconsistent effects on BEF, with the BEF relationship being modulated by landscape context. Our findings emphasise that habitat loss rather than fragmentation per se can weaken the positive BEF relationship by decreasing the degree of habitat specialisation of the community.

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatiles were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Further, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.