Closely related type II-C Cas9 orthologs recognize diverse PAMs

  1. Jingjing Wei
  2. Linghui Hou
  3. Jingtong Liu
  4. Ziwen Wang
  5. Siqi Gao
  6. Tao Qi
  7. Song Gao
  8. Shuna Sun  Is a corresponding author
  9. Yongming Wang  Is a corresponding author
  1. Fudan University, China
  2. Sun Yat-sen University Cancer Center, China
  3. Children's Hospital of Fudan University, China

Abstract

The RNA-guided CRISPR/Cas9 system is a powerful tool for genome editing, but its targeting scope is limited by the protospacer-adjacent motif (PAM). To expand the target scope, it is crucial to develop a CRISPR toolbox capable of recognizing multiple PAMs. Here, using a GFP-activation assay, we tested the activities of 29 type II-C orthologs closely related to Nme1Cas9, 25 of which are active in human cells. These orthologs recognize diverse PAMs with variable length and nucleotide preference, including purine-rich, pyrimidine-rich, and mixed purine and pyrimidine PAMs. We characterized in depth the activity and specificity of Nsp2Cas9. We also generated a chimeric Cas9 nuclease that recognizes a simple N4C PAM, representing the most relaxed PAM preference for compact Cas9s to date. These Cas9 nucleases significantly enhance our ability to perform allele-specific genome editing.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Jingjing Wei

    State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Linghui Hou

    State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jingtong Liu

    State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ziwen Wang

    State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1678-7624
  5. Siqi Gao

    State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Tao Qi

    State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Song Gao

    State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7427-6681
  8. Shuna Sun

    National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
    For correspondence
    sun_shuna@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Yongming Wang

    State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
    For correspondence
    ymw@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8269-5296

Funding

National Key Research and Development Program of China (2021YFA0910602,2021YFC2701103)

  • Yongming Wang

National Natural Science Foundation of China (82070258,81870199)

  • Yongming Wang

Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2104)

  • Yongming Wang

Science and Technology ReSearch Program of Shanghai (19DZ2282100)

  • Yongming Wang

Natural Science Fund of Shanghai Science and Technology Commission (19ZR1406300)

  • Yongming Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy J Day, University of Alabama at Birmingham, United States

Version history

  1. Received: February 11, 2022
  2. Preprint posted: February 21, 2022 (view preprint)
  3. Accepted: August 11, 2022
  4. Accepted Manuscript published: August 12, 2022 (version 1)
  5. Version of Record published: August 31, 2022 (version 2)

Copyright

© 2022, Wei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,679
    views
  • 438
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingjing Wei
  2. Linghui Hou
  3. Jingtong Liu
  4. Ziwen Wang
  5. Siqi Gao
  6. Tao Qi
  7. Song Gao
  8. Shuna Sun
  9. Yongming Wang
(2022)
Closely related type II-C Cas9 orthologs recognize diverse PAMs
eLife 11:e77825.
https://doi.org/10.7554/eLife.77825

Share this article

https://doi.org/10.7554/eLife.77825

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.