Botulinum neurotoxin accurately separates tonic vs phasic transmission and reveals heterosynaptic plasticity rules in Drosophila

  1. Yifu Han
  2. Chun Chien
  3. Pragya Goel
  4. Kaikai He
  5. Cristian Pinales
  6. Christopher Buser
  7. Dion K Dickman  Is a corresponding author
  1. University of Southern California, United States
  2. Oak Crest Institute of Science, United States

Abstract

In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like <strong>Is</strong> and weak tonic-like <strong>Ib</strong>, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. In particular, full details of the data are included in Supplemental files 1 and 2.

Article and author information

Author details

  1. Yifu Han

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1201-654X
  2. Chun Chien

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Pragya Goel

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Kaikai He

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Cristian Pinales

    Oak Crest Institute of Science, Monrovia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0826-5308
  6. Christopher Buser

    Oak Crest Institute of Science, Monrovia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4379-3878
  7. Dion K Dickman

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    For correspondence
    dickman@usc.edu
    Competing interests
    Dion K Dickman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1884-284X

Funding

National Institutes of Health (NS091546)

  • Dion K Dickman

National Institutes of Health (NS111414)

  • Dion K Dickman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,561
    views
  • 446
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yifu Han
  2. Chun Chien
  3. Pragya Goel
  4. Kaikai He
  5. Cristian Pinales
  6. Christopher Buser
  7. Dion K Dickman
(2022)
Botulinum neurotoxin accurately separates tonic vs phasic transmission and reveals heterosynaptic plasticity rules in Drosophila
eLife 11:e77924.
https://doi.org/10.7554/eLife.77924

Share this article

https://doi.org/10.7554/eLife.77924

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Neuroscience
    Elena Massai, Marco Bonizzato ... Marina Martinez
    Research Article

    Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.