Botulinum neurotoxin accurately separates tonic vs phasic transmission and reveals heterosynaptic plasticity rules in Drosophila

  1. Yifu Han
  2. Chun Chien
  3. Pragya Goel
  4. Kaikai He
  5. Cristian Pinales
  6. Christopher Buser
  7. Dion K Dickman  Is a corresponding author
  1. University of Southern California, United States
  2. Oak Crest Institute of Science, United States

Abstract

In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like <strong>Is</strong> and weak tonic-like <strong>Ib</strong>, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. In particular, full details of the data are included in Supplemental files 1 and 2.

Article and author information

Author details

  1. Yifu Han

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1201-654X
  2. Chun Chien

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Pragya Goel

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Kaikai He

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Cristian Pinales

    Oak Crest Institute of Science, Monrovia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0826-5308
  6. Christopher Buser

    Oak Crest Institute of Science, Monrovia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4379-3878
  7. Dion K Dickman

    Department of Neurobiology, University of Southern California, Los Angeles, United States
    For correspondence
    dickman@usc.edu
    Competing interests
    Dion K Dickman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1884-284X

Funding

National Institutes of Health (NS091546)

  • Dion K Dickman

National Institutes of Health (NS111414)

  • Dion K Dickman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,669
    views
  • 452
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yifu Han
  2. Chun Chien
  3. Pragya Goel
  4. Kaikai He
  5. Cristian Pinales
  6. Christopher Buser
  7. Dion K Dickman
(2022)
Botulinum neurotoxin accurately separates tonic vs phasic transmission and reveals heterosynaptic plasticity rules in Drosophila
eLife 11:e77924.
https://doi.org/10.7554/eLife.77924

Share this article

https://doi.org/10.7554/eLife.77924

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.