Early life stressful experiences escalate aggressive behavior in adulthood via changes in transthyretin expression and function

  1. Rohit Singh Rawat
  2. Aksheev Bhambri
  3. Muneesh Pal
  4. Avishek Roy
  5. Suman Jain
  6. Beena Pillai
  7. Arpita Konar  Is a corresponding author
  1. Institute of Genomics and Integrative Biology, India
  2. All India Institute of Medical Sciences, India

Abstract

Escalated and inappropriate levels of aggressive behavior referred to as pathological in psychiatry can lead to violent outcomes with detrimental impact on health and society. Early life stressful experiences might increase the risk of developing pathological aggressive behavior in adulthood, though molecular mechanisms remain elusive. Here, we provide prefrontal cortex and hypothalamus specific transcriptome profiles of peripubertal stress (PPS) exposed Balb/c adult male mice exhibiting escalated aggression and adult female mice resilient to such aberrant behavioral responses. We identify transthyretin (TTR), a well known thyroid hormone transporter, as a key regulator of PPS induced escalated aggressive behavior in males. Brain region specific long-term changes in Ttr gene expression and thyroid hormone (TH) availability were evident in PPS induced escalated aggressive male mice, circulating TH being unaltered. Ttr promoter methylation marks were also altered being hypermethylated in hypothalamus and hypomethylated in prefrontal cortex corroborating with its expression pattern. Further, Ttr knockdown in hypothalamus resulted in escalated aggressive behavior in males without PPS and also reduced TH levels and expression of TH responsive genes (Nrgn, Trh and Hr). Escalated aggressive behavior along with reduced Ttr gene expression and TH levels in hypothalamus was also evident in next generation F1 male progenies. Our findings reveal that stressful experiences during puberty might trigger lasting escalated aggression by modulating TTR expression in brain. TTR can serve as a potential target in reversal of escalated aggression and related psychopathologies.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE199844.All data generated or analyzed during this study are included in the manuscript and supplementary files.Source data files have been provided for Fig. 1C, Fig. 3D, Fig. 4B-4J, Fig. 4P, Fig.5B-5D, Fig.6B-6E, Fig.7 and Fig. 4-figure supplement 1

The following data sets were generated

Article and author information

Author details

  1. Rohit Singh Rawat

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6329-6636
  2. Aksheev Bhambri

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Muneesh Pal

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Avishek Roy

    All India Institute of Medical Sciences, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2633-487X
  5. Suman Jain

    All India Institute of Medical Sciences, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Beena Pillai

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Arpita Konar

    Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    konar.arpita24@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1761-1065

Funding

Department of Science and Technology, Ministry of Science and Technology, India (Inspire Faculty Award,DST/INSPIRE/04/2014/ 002261)

  • Arpita Konar

Department of Biotechnology, Ministry of Science and Technology, India (Research Grant,GAP0197)

  • Beena Pillai

Indian Council of Medical Research (Research Grant,IR-594/2019/RS)

  • Beena Pillai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving live animals were approved by the Institutional Animal Ethics committee (IAEC) of CSIR-Institute of Genomics and Integrative Biology (IAEC Approval Number-IGIB/IAEC/3/15) that is registered under Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India (Registration No and Date- 9/1999/CPCSEA). Male and female offspring of Balb/c mice bred in the institutional animal house were used for the study. All animals were housed under SPF conditions. They were kept in individually ventilated cages (IVC) at 24{plus minus}2ºC on a 12h light/dark cycle with ad libitum access to food and water. Animal handling and experiments were conducted in accordance with the institutional guidelines.

Copyright

© 2022, Rawat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,735
    views
  • 411
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohit Singh Rawat
  2. Aksheev Bhambri
  3. Muneesh Pal
  4. Avishek Roy
  5. Suman Jain
  6. Beena Pillai
  7. Arpita Konar
(2022)
Early life stressful experiences escalate aggressive behavior in adulthood via changes in transthyretin expression and function
eLife 11:e77968.
https://doi.org/10.7554/eLife.77968

Share this article

https://doi.org/10.7554/eLife.77968

Further reading

    1. Neuroscience
    Jian Dong, Mian Chen ... Matthijs Verhage
    Research Article

    Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.