Early life stressful experiences escalate aggressive behavior in adulthood via changes in transthyretin expression and function

  1. Rohit Singh Rawat
  2. Aksheev Bhambri
  3. Muneesh Pal
  4. Avishek Roy
  5. Suman Jain
  6. Beena Pillai
  7. Arpita Konar  Is a corresponding author
  1. Institute of Genomics and Integrative Biology, India
  2. All India Institute of Medical Sciences, India

Abstract

Escalated and inappropriate levels of aggressive behavior referred to as pathological in psychiatry can lead to violent outcomes with detrimental impact on health and society. Early life stressful experiences might increase the risk of developing pathological aggressive behavior in adulthood, though molecular mechanisms remain elusive. Here, we provide prefrontal cortex and hypothalamus specific transcriptome profiles of peripubertal stress (PPS) exposed Balb/c adult male mice exhibiting escalated aggression and adult female mice resilient to such aberrant behavioral responses. We identify transthyretin (TTR), a well known thyroid hormone transporter, as a key regulator of PPS induced escalated aggressive behavior in males. Brain region specific long-term changes in Ttr gene expression and thyroid hormone (TH) availability were evident in PPS induced escalated aggressive male mice, circulating TH being unaltered. Ttr promoter methylation marks were also altered being hypermethylated in hypothalamus and hypomethylated in prefrontal cortex corroborating with its expression pattern. Further, Ttr knockdown in hypothalamus resulted in escalated aggressive behavior in males without PPS and also reduced TH levels and expression of TH responsive genes (Nrgn, Trh and Hr). Escalated aggressive behavior along with reduced Ttr gene expression and TH levels in hypothalamus was also evident in next generation F1 male progenies. Our findings reveal that stressful experiences during puberty might trigger lasting escalated aggression by modulating TTR expression in brain. TTR can serve as a potential target in reversal of escalated aggression and related psychopathologies.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE199844.All data generated or analyzed during this study are included in the manuscript and supplementary files.Source data files have been provided for Fig. 1C, Fig. 3D, Fig. 4B-4J, Fig. 4P, Fig.5B-5D, Fig.6B-6E, Fig.7 and Fig. 4-figure supplement 1

The following data sets were generated

Article and author information

Author details

  1. Rohit Singh Rawat

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6329-6636
  2. Aksheev Bhambri

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Muneesh Pal

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Avishek Roy

    All India Institute of Medical Sciences, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2633-487X
  5. Suman Jain

    All India Institute of Medical Sciences, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Beena Pillai

    Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Arpita Konar

    Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    konar.arpita24@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1761-1065

Funding

Department of Science and Technology, Ministry of Science and Technology, India (Inspire Faculty Award,DST/INSPIRE/04/2014/ 002261)

  • Arpita Konar

Department of Biotechnology, Ministry of Science and Technology, India (Research Grant,GAP0197)

  • Beena Pillai

Indian Council of Medical Research (Research Grant,IR-594/2019/RS)

  • Beena Pillai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving live animals were approved by the Institutional Animal Ethics committee (IAEC) of CSIR-Institute of Genomics and Integrative Biology (IAEC Approval Number-IGIB/IAEC/3/15) that is registered under Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India (Registration No and Date- 9/1999/CPCSEA). Male and female offspring of Balb/c mice bred in the institutional animal house were used for the study. All animals were housed under SPF conditions. They were kept in individually ventilated cages (IVC) at 24{plus minus}2ºC on a 12h light/dark cycle with ad libitum access to food and water. Animal handling and experiments were conducted in accordance with the institutional guidelines.

Copyright

© 2022, Rawat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,675
    views
  • 406
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohit Singh Rawat
  2. Aksheev Bhambri
  3. Muneesh Pal
  4. Avishek Roy
  5. Suman Jain
  6. Beena Pillai
  7. Arpita Konar
(2022)
Early life stressful experiences escalate aggressive behavior in adulthood via changes in transthyretin expression and function
eLife 11:e77968.
https://doi.org/10.7554/eLife.77968

Share this article

https://doi.org/10.7554/eLife.77968

Further reading

    1. Neuroscience
    Moritz F Wurm, Doruk Yiğit Erigüç
    Research Article

    Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent–object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.