The acid ceramidase/ceramide axis controls parasitemia in Plasmodium yoelii-infected mice by regulating erythropoiesis

  1. Anne Günther
  2. Matthias Hose
  3. Hanna Abberger
  4. Fabian Schumacher
  5. Ylva Veith
  6. Burkhard Kleuser
  7. Kai Matuschewski
  8. Karl Sebastian Lang
  9. Erich Gulbins
  10. Jan Buer
  11. Astrid Westendorf
  12. Wiebke Hansen  Is a corresponding author
  1. University of Duisburg-Essen, Germany
  2. Freie Universität Berlin, Germany
  3. Humboldt-Universität zu Berlin, Germany

Abstract

Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii (P. yoelii) infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wild type mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.; Source Data files have been provided for all Figures and Figure Supplements.

Article and author information

Author details

  1. Anne Günther

    Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthias Hose

    Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0746-5591
  3. Hanna Abberger

    Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Schumacher

    Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8703-3275
  5. Ylva Veith

    Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Burkhard Kleuser

    Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kai Matuschewski

    Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6147-8591
  8. Karl Sebastian Lang

    Institute of Immunology, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Erich Gulbins

    Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Jan Buer

    Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7602-1698
  11. Astrid Westendorf

    Institute of Medical Microbiology, University of Duisburg-Essen, Duisburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2121-2892
  12. Wiebke Hansen

    Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
    For correspondence
    wiebke.hansen@uk-essen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6020-0886

Funding

Deutsche Forschungsgemeinschaft (GRK2098)

  • Karl Sebastian Lang
  • Erich Gulbins
  • Jan Buer
  • Astrid Westendorf
  • Wiebke Hansen

Deutsche Forschungsgemeinschaft (GRK2581)

  • Burkhard Kleuser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in strict accordance with the guidelines of the German Animal Protection Law and approved by the State Agency for Nature, Environment, and Consumer Protection (LANUV), North Rhine-Westphalia, Germany (Az 84-02.04.2015.A474, Az 81-02.04.2018.A302).

Copyright

© 2022, Günther et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 767
    views
  • 215
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne Günther
  2. Matthias Hose
  3. Hanna Abberger
  4. Fabian Schumacher
  5. Ylva Veith
  6. Burkhard Kleuser
  7. Kai Matuschewski
  8. Karl Sebastian Lang
  9. Erich Gulbins
  10. Jan Buer
  11. Astrid Westendorf
  12. Wiebke Hansen
(2022)
The acid ceramidase/ceramide axis controls parasitemia in Plasmodium yoelii-infected mice by regulating erythropoiesis
eLife 11:e77975.
https://doi.org/10.7554/eLife.77975

Share this article

https://doi.org/10.7554/eLife.77975

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Microbiology and Infectious Disease
    Linkang Wang, Haiyan Wang ... Ping Qian
    Research Article

    Bacillus velezensis is a species of Bacillus that has been widely investigated because of its broad-spectrum antimicrobial activity. However, most studies on B. velezensis have focused on the biocontrol of plant diseases, with few reports on antagonizing Salmonella Typhimurium infections. In this investigation, it was discovered that B. velezensis HBXN2020, which was isolated from healthy black pigs, possessed strong anti-stress and broad-spectrum antibacterial activity. Importantly, B. velezensis HBXN2020 did not cause any adverse side effects in mice when administered at various doses (1×107, 1×108, and 1×109 CFU) for 14 days. Supplementing B. velezensis HBXN2020 spores, either as a curative or preventive measure, dramatically reduced the levels of S. Typhimurium ATCC14028 in the mice’s feces, ileum, cecum, and colon, as well as the disease activity index (DAI), in a model of infection caused by this pathogen in mice. Additionally, supplementing B. velezensis HBXN2020 spores significantly regulated cytokine levels (Tnfa, Il1b, Il6, and Il10) and maintained the expression of tight junction proteins and mucin protein. Most importantly, adding B. velezensis HBXN2020 spores to the colonic microbiota improved its stability and increased the amount of beneficial bacteria (Lactobacillus and Akkermansia). All together, B. velezensis HBXN2020 can improve intestinal microbiota stability and barrier integrity and reduce inflammation to help treat infection by S. Typhimurium.