Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway

  1. Jung-Min Kim
  2. Yeon-Suk Yang
  3. Jaehyoung Hong
  4. Sachin Chaugule
  5. Hyonho Chun
  6. Marjolein CH van der Meulen
  7. Ren Xu
  8. Matthew B Greenblatt
  9. Jae-hyuck Shim  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Korea Advanced Institute of Science and Technology, Republic of Korea
  3. Cornell University, United States
  4. Xiamen University, China
  5. Weill Cornell, United States

Abstract

Emerging evidence supports that osteogenic differentiation of skeletal progenitors is a key determinant of overall bone formation and bone mass. Despite extensive studies showing the function of mitogen-activated protein kinases (MAPKs) in osteoblast differentiation, none of these studies show in vivo evidence of a role for MAPKs in osteoblast maturation subsequent to lineage commitment. Here, we describe how the extracellular signal-regulated kinase (ERK) pathway in osteoblasts controls bone formation by suppressing the mechanistic target of rapamycin (mTOR) pathway. We also show that, while ERK inhibition blocks the differentiation of osteogenic precursors when initiated at an early stage, ERK inhibition surprisingly promotes the later stages of osteoblast differentiation. Accordingly, inhibition of the ERK pathway using a small compound inhibitor or conditional deletion of the MAP2Ks Map2k1 (MEK1) and Map2k2 (MEK2), in mature osteoblasts and osteocytes, markedly increased bone formation due to augmented osteoblast differentiation. Mice with inducible deletion of the ERK pathway in mature osteoblasts. also displayed similar phenotypes, demonstrating that this phenotype reflects continuous postnatal inhibition of late-stage osteoblast maturation. Mechanistically, ERK inhibition increases mitochondrial function and SGK1 phosphorylation via mTOR2 activation, which leads to osteoblast differentiation and production of angiogenic and osteogenic factors to promote bone formation. This phenotype was partially reversed by inhibiting mTOR. Our study uncovers a surprising dichotomy of ERK pathway functions in osteoblasts, whereby ERK activation promotes the early differentiation of osteoblast precursors, but inhibits the subsequent differentiation of committed osteoblasts via mTOR-mediated regulation of mitochondrial function and SGK1.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all the figures.

Article and author information

Author details

  1. Jung-Min Kim

    Department of Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Yeon-Suk Yang

    Department of Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  3. Jaehyoung Hong

    Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Sachin Chaugule

    Department of Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Hyonho Chun

    Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  6. Marjolein CH van der Meulen

    Meinig School of Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6637-9808
  7. Ren Xu

    State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6578-4553
  8. Matthew B Greenblatt

    Department of Pathology and Laboratory Medicine, Weill Cornell, New York, United States
    Competing interests
    No competing interests declared.
  9. Jae-hyuck Shim

    Department of Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    jaehyuck.shim@umassmed.edu
    Competing interests
    Jae-hyuck Shim, is a scientific co-founder of the AAVAA Therapeutics and holds equity in this company. These pose no conflicts for this study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4947-3293

Funding

NIH-NIAMS (R21AR077557)

  • Jae-hyuck Shim

AAVAA Therapeutics

  • Jae-hyuck Shim

Burroughs Wellcome Fund

  • Matthew B Greenblatt

NIH-NIAMS (R01AR075585)

  • Matthew B Greenblatt

Novartis Institutes for Biomedical Research Global Scholars Award

  • Matthew B Greenblatt

Pershing Square Sohn Cancer Research Alliance award

  • Matthew B Greenblatt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hiroshi Takayanagi, The University of Tokyo, Japan

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (A2564) of the University of Massachusetts Chan Medical School. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Massachusetts Chan Medical School (A2564).

Version history

  1. Preprint posted: January 24, 2022 (view preprint)
  2. Received: February 22, 2022
  3. Accepted: August 16, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Version of Record published: August 26, 2022 (version 2)

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,014
    views
  • 298
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jung-Min Kim
  2. Yeon-Suk Yang
  3. Jaehyoung Hong
  4. Sachin Chaugule
  5. Hyonho Chun
  6. Marjolein CH van der Meulen
  7. Ren Xu
  8. Matthew B Greenblatt
  9. Jae-hyuck Shim
(2022)
Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway
eLife 11:e78069.
https://doi.org/10.7554/eLife.78069

Share this article

https://doi.org/10.7554/eLife.78069

Further reading

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800

    1. Medicine
    Jinjing Chen, Ruoyu Wang ... Jongsook Kemper
    Research Article

    The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.