The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion

  1. Robin F Dard
  2. Erwan Leprince
  3. Julien Denis
  4. Shrisha Rao Balappa
  5. Dmitrii Suchkov
  6. Richard Boyce
  7. Catherine Lopez
  8. Marie Giorgi-Kurz
  9. Tom Szwagier
  10. Théo Dumont
  11. Hervé Rouault
  12. Marat Minlebaev
  13. Agnès Baude
  14. Rosa Cossart  Is a corresponding author
  15. Michel A Picardo  Is a corresponding author
  1. Aix Marseille Univ, INSERM, INMED U1249, France
  2. Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), France
  3. Mines ParisTech, France

Abstract

Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas including the hippocampus, which in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within two days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.

Data availability

NWB dataset is available at DANDI Archive (https://dandiarchive.org 000219).All codes are on GITLAB (Cossart Lab - GitLab).

The following data sets were generated

Article and author information

Author details

  1. Robin F Dard

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Erwan Leprince

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Denis

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0537-6483
  4. Shrisha Rao Balappa

    Turing Centre for Living systems, Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Dmitrii Suchkov

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard Boyce

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Catherine Lopez

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie Giorgi-Kurz

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Tom Szwagier

    Mines ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Théo Dumont

    Mines ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Hervé Rouault

    Turing Centre for Living systems, Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4997-2711
  12. Marat Minlebaev

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0722-7027
  13. Agnès Baude

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7025-364X
  14. Rosa Cossart

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    For correspondence
    rosa.cossart@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2111-6638
  15. Michel A Picardo

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    For correspondence
    michel.picardo@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1198-3930

Funding

European Resuscitation Council (646925)

  • Rosa Cossart

Fondation Bettencourt Schueller

  • Rosa Cossart

Neurodata Without Borders (R20046AA)

  • Michel A Picardo

Agence Nationale de la Recherche (ANR-16-CONV-0001)

  • Rosa Cossart

Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche (MESR)

  • Robin F Dard
  • Erwan Leprince

Fondation pour la Recherche Médicale (FDT202106012824)

  • Robin F Dard

Fondation pour la Recherche Médicale (FDM20170638339)

  • Julien Denis

Fondation pour la Recherche Médicale (ARF20160936186)

  • Michel A Picardo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed under the guidelines of the French National Ethics Committee forSciences and Health report on "Ethical Principles for Animal Experimentation" in agreement with theEuropean Community Directive 86/609/EEC (Apafis#18-185 and #30-959).

Copyright

© 2022, Dard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,082
    views
  • 349
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robin F Dard
  2. Erwan Leprince
  3. Julien Denis
  4. Shrisha Rao Balappa
  5. Dmitrii Suchkov
  6. Richard Boyce
  7. Catherine Lopez
  8. Marie Giorgi-Kurz
  9. Tom Szwagier
  10. Théo Dumont
  11. Hervé Rouault
  12. Marat Minlebaev
  13. Agnès Baude
  14. Rosa Cossart
  15. Michel A Picardo
(2022)
The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion
eLife 11:e78116.
https://doi.org/10.7554/eLife.78116

Share this article

https://doi.org/10.7554/eLife.78116

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.