The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion

  1. Robin F Dard
  2. Erwan Leprince
  3. Julien Denis
  4. Shrisha Rao Balappa
  5. Dmitrii Suchkov
  6. Richard Boyce
  7. Catherine Lopez
  8. Marie Giorgi-Kurz
  9. Tom Szwagier
  10. Théo Dumont
  11. Hervé Rouault
  12. Marat Minlebaev
  13. Agnès Baude
  14. Rosa Cossart  Is a corresponding author
  15. Michel A Picardo  Is a corresponding author
  1. Aix Marseille Univ, INSERM, INMED U1249, France
  2. Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), France
  3. Mines ParisTech, France

Abstract

Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas including the hippocampus, which in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within two days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.

Data availability

NWB dataset is available at DANDI Archive (https://dandiarchive.org 000219).All codes are on GITLAB (Cossart Lab - GitLab).

The following data sets were generated

Article and author information

Author details

  1. Robin F Dard

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Erwan Leprince

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Denis

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0537-6483
  4. Shrisha Rao Balappa

    Turing Centre for Living systems, Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Dmitrii Suchkov

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard Boyce

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Catherine Lopez

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie Giorgi-Kurz

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Tom Szwagier

    Mines ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Théo Dumont

    Mines ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Hervé Rouault

    Turing Centre for Living systems, Aix-Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4997-2711
  12. Marat Minlebaev

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0722-7027
  13. Agnès Baude

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7025-364X
  14. Rosa Cossart

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    For correspondence
    rosa.cossart@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2111-6638
  15. Michel A Picardo

    Turing Centre for Living systems, Aix Marseille Univ, INSERM, INMED U1249, Marseille, France
    For correspondence
    michel.picardo@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1198-3930

Funding

European Resuscitation Council (646925)

  • Rosa Cossart

Fondation Bettencourt Schueller

  • Rosa Cossart

Neurodata Without Borders (R20046AA)

  • Michel A Picardo

Agence Nationale de la Recherche (ANR-16-CONV-0001)

  • Rosa Cossart

Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche (MESR)

  • Robin F Dard
  • Erwan Leprince

Fondation pour la Recherche Médicale (FDT202106012824)

  • Robin F Dard

Fondation pour la Recherche Médicale (FDM20170638339)

  • Julien Denis

Fondation pour la Recherche Médicale (ARF20160936186)

  • Michel A Picardo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed under the guidelines of the French National Ethics Committee forSciences and Health report on "Ethical Principles for Animal Experimentation" in agreement with theEuropean Community Directive 86/609/EEC (Apafis#18-185 and #30-959).

Copyright

© 2022, Dard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,025
    views
  • 343
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robin F Dard
  2. Erwan Leprince
  3. Julien Denis
  4. Shrisha Rao Balappa
  5. Dmitrii Suchkov
  6. Richard Boyce
  7. Catherine Lopez
  8. Marie Giorgi-Kurz
  9. Tom Szwagier
  10. Théo Dumont
  11. Hervé Rouault
  12. Marat Minlebaev
  13. Agnès Baude
  14. Rosa Cossart
  15. Michel A Picardo
(2022)
The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion
eLife 11:e78116.
https://doi.org/10.7554/eLife.78116

Share this article

https://doi.org/10.7554/eLife.78116

Further reading

    1. Neuroscience
    Yanqi Liu, Pol Bech ... Carl CH Petersen
    Research Article

    Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.

    1. Neuroscience
    Jun Yang, Hanqi Zhang, Sukbin Lim
    Research Article

    Errors in stimulus estimation reveal how stimulus representation changes during cognitive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known error patterns typically associated with visual orientation perception. Recent experiments suggest that these errors continuously evolve during working memory, posing a challenge that neither static sensory models nor traditional memory models can address. Here, we demonstrate that these evolving errors, maintaining characteristic shapes, require network interaction between two distinct modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory module, operating alone, supports homogeneous representation via continuous attractor dynamics, the fully connected network forms discrete attractors with moderate drift speed and nonuniform diffusion processes. Together, our work underscores the significance of sensory-memory interaction in continuously shaping stimulus representation during working memory.