Vocalization categorization behavior explained by a feature-based auditory categorization model

Abstract

Vocal animals produce multiple categories of calls with high between- and within-subject variability, over which listeners must generalize to accomplish call categorization. The behavioral strategies and neural mechanisms that support this ability to generalize are largely unexplored. We previously proposed a theoretical model that accomplished call categorization by detecting features of intermediate complexity that best contrasted each call category from all other categories. We further demonstrated that some neural responses in the primary auditory cortex were consistent with such a model. Here, we asked whether a feature-based model could predict call categorization behavior. We trained both the model and guinea pigs on call categorization tasks using natural calls. We then tested categorization by the model and guinea pigs using temporally and spectrally altered calls. Both the model and guinea pigs were surprisingly resilient to temporal manipulations, but sensitive to moderate frequency shifts. Critically, the model predicted about 50% of the variance in guinea pig behavior. By adopting different model training strategies and examining features that contributed to solving specific tasks, we could gain insight into possible strategies used by animals to categorize calls. Our results validate a model that uses the detection of intermediate-complexity contrastive features to accomplish call categorization.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 3 - 12.

Article and author information

Author details

  1. Manaswini Kar

    Center for Neuroscience, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marianny Pernia

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9889-3577
  3. Kayla Williams

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satyabrata Parida

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2896-2522
  5. Nathan Alan Schneider

    Center for Neuroscience, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9145-5427
  6. Madelyn McAndrew

    Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Isha Kumbam

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Srivatsun Sadagopan

    Center for Neuroscience, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    vatsun@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1116-8728

Funding

National Institutes of Health (R01DC017141)

  • Srivatsun Sadagopan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures conformed to the NIH Guide for the Care and Use of Laboratory Animals and were approved by the institutional animal care and use committee of the University of Pittsburgh (protocol number 21069431).

Copyright

© 2022, Kar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 732
    views
  • 149
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manaswini Kar
  2. Marianny Pernia
  3. Kayla Williams
  4. Satyabrata Parida
  5. Nathan Alan Schneider
  6. Madelyn McAndrew
  7. Isha Kumbam
  8. Srivatsun Sadagopan
(2022)
Vocalization categorization behavior explained by a feature-based auditory categorization model
eLife 11:e78278.
https://doi.org/10.7554/eLife.78278

Share this article

https://doi.org/10.7554/eLife.78278

Further reading

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.