Abstract

How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.

Data availability

All data are available at Gene Expression Omnibus under the accession number GSE174171. All scripts are posted publicly with no restrictions on the Danko Lab GitHub organization, at: https://github.com/Danko-Lab/F1_8Organs.

The following data sets were generated

Article and author information

Author details

  1. Shao-Pei Chou

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriana K Alexander

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward J Rice

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lauren A Choate

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4246-0550
  5. Charles G Danko

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    For correspondence
    dankoc@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1999-7125

Funding

National Human Genome Research Institute (R01-HG010346)

  • Charles G Danko

National Human Genome Research Institute (R01-HG009309)

  • Charles G Danko

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse studies were conducted with prior approval by the Cornell Institutional Animal Care and Use Committee, under protocol 2004-0063.

Copyright

© 2022, Chou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,864
    views
  • 505
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shao-Pei Chou
  2. Adriana K Alexander
  3. Edward J Rice
  4. Lauren A Choate
  5. Charles G Danko
(2022)
Genetic dissection of the RNA polymerase II transcription cycle
eLife 11:e78458.
https://doi.org/10.7554/eLife.78458

Share this article

https://doi.org/10.7554/eLife.78458

Further reading

    1. Chromosomes and Gene Expression
    Linda S Rubio, Suman Mohajan, David S Gross
    Research Article

    In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10–20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5–10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.

    1. Chromosomes and Gene Expression
    Shamayita Roy, Hemanta Adhikary ... Damien D'Amours
    Research Article

    The R-loop is a common transcriptional by-product that consists of an RNA-DNA duplex joined to a displaced strand of genomic DNA. While the effects of R-loops on health and disease are well established, there is still an incomplete understanding of the cellular processes responsible for their removal from eukaryotic genomes. Here, we show that a core regulator of chromosome architecture -the Smc5/6 complex- plays a crucial role in the removal of R-loop structures formed during gene transcription. Consistent with this, budding yeast mutants defective in the Smc5/6 complex and enzymes involved in R-loop resolution show strong synthetic interactions and accumulate high levels of RNA-DNA hybrid structures in their chromosomes. Importantly, we demonstrate that the Smc5/6 complex acts on specific types of RNA-DNA hybrid structures in vivo and promotes R-loop degradation by the RNase H2 enzyme in vitro. Collectively, our results reveal a crucial role for the Smc5/6 complex in the removal of toxic R-loops formed at highly transcribed genes and telomeres.