Abstract

How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.

Data availability

All data are available at Gene Expression Omnibus under the accession number GSE174171. All scripts are posted publicly with no restrictions on the Danko Lab GitHub organization, at: https://github.com/Danko-Lab/F1_8Organs.

The following data sets were generated

Article and author information

Author details

  1. Shao-Pei Chou

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriana K Alexander

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward J Rice

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lauren A Choate

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4246-0550
  5. Charles G Danko

    Baker Institute for Animal Health, Cornell University, Ithaca, United States
    For correspondence
    dankoc@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1999-7125

Funding

National Human Genome Research Institute (R01-HG010346)

  • Charles G Danko

National Human Genome Research Institute (R01-HG009309)

  • Charles G Danko

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse studies were conducted with prior approval by the Cornell Institutional Animal Care and Use Committee, under protocol 2004-0063.

Copyright

© 2022, Chou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,895
    views
  • 508
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shao-Pei Chou
  2. Adriana K Alexander
  3. Edward J Rice
  4. Lauren A Choate
  5. Charles G Danko
(2022)
Genetic dissection of the RNA polymerase II transcription cycle
eLife 11:e78458.
https://doi.org/10.7554/eLife.78458

Share this article

https://doi.org/10.7554/eLife.78458

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Marius Regin, Yingnan Lei ... Claudia Spits
    Research Article

    About 70% of human cleavage stage embryos show chromosomal mosaicism, falling to 20% in blastocysts. Chromosomally mosaic human blastocysts can implant and lead to healthy new-borns with normal karyotypes. Studies in mouse embryos and human gastruloids showed that aneuploid cells are eliminated from the epiblast by p53-mediated apoptosis while being tolerated in the trophectoderm. These observations suggest a selective loss of aneuploid cells from human embryos, but the underlying mechanisms are not yet fully understood. Here, we investigated the cellular consequences of aneuploidy in a total of 125 human blastocysts. RNA-sequencing of trophectoderm cells showed activated p53 pathway and apoptosis proportionate to the level of chromosomal imbalance. Immunostaining corroborated that aneuploidy triggers proteotoxic stress, autophagy, p53-signaling, and apoptosis independent from DNA damage. Total cell numbers were lower in aneuploid embryos, due to a decline both in trophectoderm and in epiblast/primitive endoderm cell numbers. While lower cell numbers in trophectoderm may be attributed to apoptosis, aneuploidy impaired the second lineage segregation, particularly primitive endoderm formation. This might be reinforced by retention of NANOG. Our findings might explain why fully aneuploid embryos fail to further develop and we hypothesize that the same mechanisms lead to the removal of aneuploid cells from mosaic embryos.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Augusto Berrocal, Nicholas C Lammers ... Michael B Eisen
    Research Advance

    Transcription often occurs in bursts as gene promoters switch stochastically between active and inactive states. Enhancers can dictate transcriptional activity in animal development through the modulation of burst frequency, duration, or amplitude. Previous studies observed that different enhancers can achieve a wide range of transcriptional outputs through the same strategies of bursting control. For example, in Berrocal et al., 2020, we showed that despite responding to different transcription factors, all even-skipped enhancers increase transcription by upregulating burst frequency and amplitude while burst duration remains largely constant. These shared bursting strategies suggest that a unified molecular mechanism constraints how enhancers modulate transcriptional output. Alternatively, different enhancers could have converged on the same bursting control strategy because of natural selection favoring one of these particular strategies. To distinguish between these two scenarios, we compared transcriptional bursting between endogenous and ectopic gene expression patterns. Because enhancers act under different regulatory inputs in ectopic patterns, dissimilar bursting control strategies between endogenous and ectopic patterns would suggest that enhancers adapted their bursting strategies to their trans-regulatory environment. Here, we generated ectopic even-skipped transcription patterns in fruit fly embryos and discovered that bursting strategies remain consistent in endogenous and ectopic even-skipped expression. These results provide evidence for a unified molecular mechanism shaping even-skipped bursting strategies and serve as a starting point to uncover the realm of strategies employed by other enhancers.