Neuron-associated macrophage proliferation in the sensory ganglia is associated with peripheral nerve injury-induced neuropathic pain involving CX3CR1 signaling

Abstract

Resident macrophages are distributed across all tissues and are highly heterogeneous due to adaptation to different tissue-specific environments. The resident macrophages of the sensory ganglia (sensory neuron-associated macrophages, sNAMs) are in close contact with the cell body of primary sensory neurons and might play physiological and pathophysiological roles. After peripheral nerve injury, there is an increase in the population of macrophage in the sensory ganglia, which have been implicated in different conditions, including neuropathic pain development. However, it is still under debate whether macrophage accumulation in the sensory ganglia after peripheral nerve injury is due to the local proliferation of resident macrophages or a result of blood monocyte infiltration. Here, we confirmed that the number of macrophages increased in the sensory ganglia after the spared nerve injury (SNI) model in mice. Using different approaches, we found that the increase in the number of macrophages in the sensory ganglia after SNI is a consequence of the proliferation of resident CX3CR1+ macrophages, which participate in the development of neuropathic pain, but not due to infiltration of peripheral blood monocytes. These proliferating macrophages are the source of pro-inflammatory cytokines such as TNF and IL-1b. In addition, we found that CX3CR1 signaling is involved in the sNAMs proliferation and neuropathic pain development after peripheral nerve injury. In summary, these results indicated that peripheral nerve injury leads to sNAMs proliferation in the sensory ganglia in a CX3CR1-dependent manner accounting for neuropathic pain development. In conclusion, sNAMs proliferation could be modulated to change pathophysiological conditions such as chronic neuropathic pain.

Data availability

All data generated or analyzed during this study are included in the manuscript. Public scRNA-seq data are available in Gene Expression Omnibus (GEO) database under the series number GSE139103 (Avraham et al. 2020).

The following previously published data sets were used

Article and author information

Author details

  1. Rafaela Mano Guimarães

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Conceição Elidianne Aníbal-Silva

    Department of Pharmacology, University of Sao Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Marcela Davoli-Ferreira

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Francisco Isaac Fernandes Gomes

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Atlante Silva Mendes

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Claudia Magalhães Cavallini

    Department of Pharmacology, University of Sao Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Miriam Mendes Fonseca

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Samara Damasceno

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Larissa Pinto Andrade

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Marco Colonna

    Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cyril Rivat

    Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Fernando Q Cunha

    Department of Pharmacology, University of Sao Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  13. José C Alves-Filho

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  14. Thiago Mattar Cunha

    Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
    For correspondence
    thicunha@fmrp.usp.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1084-0065

Funding

The authors declare that there was no funding for this work.

Ethics

Animal experimentation: Animal care and handling procedures were under the guidelines of the International Association for the Study of Pain for those animals used in pain research and were approved by the Committee for Ethics in Animal Research of the Ribeirao Preto Medical School- University of São Paulo (Process number 002/2017).

Copyright

© 2023, Guimarães et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,649
    views
  • 445
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafaela Mano Guimarães
  2. Conceição Elidianne Aníbal-Silva
  3. Marcela Davoli-Ferreira
  4. Francisco Isaac Fernandes Gomes
  5. Atlante Silva Mendes
  6. Maria Claudia Magalhães Cavallini
  7. Miriam Mendes Fonseca
  8. Samara Damasceno
  9. Larissa Pinto Andrade
  10. Marco Colonna
  11. Cyril Rivat
  12. Fernando Q Cunha
  13. José C Alves-Filho
  14. Thiago Mattar Cunha
(2023)
Neuron-associated macrophage proliferation in the sensory ganglia is associated with peripheral nerve injury-induced neuropathic pain involving CX3CR1 signaling
eLife 12:e78515.
https://doi.org/10.7554/eLife.78515

Share this article

https://doi.org/10.7554/eLife.78515

Further reading

    1. Immunology and Inflammation
    Donal J Cox, Sarah A Connolly ... Joseph Keane
    Research Article

    Airway macrophages (AM) are the predominant immune cell in the lung and play a crucial role in preventing infection, making them a target for host directed therapy. Macrophage effector functions are associated with cellular metabolism. A knowledge gap remains in understanding metabolic reprogramming and functional plasticity of distinct human macrophage subpopulations, especially in lung resident AM. We examined tissue-resident AM and monocyte-derived macrophages (MDM; as a model of blood derived macrophages) in their resting state and after priming with IFN-γ or IL-4 to model the Th1/Th2 axis in the lung. Human macrophages, regardless of origin, had a strong induction of glycolysis in response to IFN-γ or upon stimulation. IFN-γ significantly enhanced cellular energetics in both AM and MDM by upregulating both glycolysis and oxidative phosphorylation. Upon stimulation, AM do not decrease oxidative phosphorylation unlike MDM which shift to ‘Warburg’-like metabolism. IFN-γ priming promoted cytokine secretion in AM. Blocking glycolysis with 2-deoxyglucose significantly reduced IFN-γ driven cytokine production in AM, indicating that IFN-γ induces functional plasticity in human AM, which is mechanistically mediated by glycolysis. Directly comparing responses between macrophages, AM were more responsive to IFN-γ priming and dependent on glycolysis for cytokine secretion than MDM. Interestingly, TNF production was under the control of glycolysis in AM and not in MDM. MDM exhibited glycolysis-dependent upregulation of HLA-DR and CD40, whereas IFN-γ upregulated HLA-DR and CD40 on AM independently of glycolysis. These data indicate that human AM are functionally plastic and respond to IFN-γ in a manner distinct from MDM. These data provide evidence that human AM are a tractable target for inhalable immunomodulatory therapies for respiratory diseases.

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.