Abstract

Dysfunctional and leaky blood vessels resulting from disruption of the endothelial cell (EC) barrier accompanies numerous diseases. The EC barrier is established through endothelial cell tight and adherens junctions. However, the expression patterning and precise contribution of different junctional proteins to the EC barrier is poorly understood. Here, we focus on organs with continuous endothelium to identify structural and functional in vivo characteristics of the EC barrier. Assembly of multiple single-cell RNAseq datasets into a single integrated database revealed the variability and commonalities of EC barrier patterning. Across tissues, Claudin5 exhibited diminishing expression along the arteriovenous axis, correlating with EC barrier integrity. Functional analysis identified tissue-specific differences in leakage patterning and response to the leakage agonist histamine. Loss of Claudin5 enhanced histamine-induced leakage in an organotypic and vessel type-specific manner in an inducible, EC-specific, knock-out mouse. Mechanistically, Claudin5 loss left junction ultrastructure unaffected but altered its composition, with concomitant loss of zonula occludens-1 and upregulation of VE-Cadherin expression. These findings uncover the organ-specific organisation of the EC barrier and distinct importance of Claudin5 in different vascular beds, providing insights to modify EC barrier stability in a targeted, organ-specific manner.

Data availability

The murine ear skin data has been deposited in GEO under accession number GSE202290. Further details regarding specifics of the analysis will be available upon reasonable request.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mark Richards

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    For correspondence
    mark.richards@igp.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2266-3329
  2. Emmanuel Nwadozi

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Sagnik Pal

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5562-1555
  4. Pernilla Martinsson

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Mika Kaakinen

    Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Marleen Gloger

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3319-7642
  7. Elin Sjöberg

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8799-4874
  8. Katarzyna Koltowska

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6841-8900
  9. Christer Betsholtz

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Lauri Eklund

    Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3177-7504
  11. Sofia Nordling

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Lena Claesson-Welsh

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    For correspondence
    lena.welsh@igp.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4275-2000

Funding

Vetenskapsrådet (2020-01349)

  • Lena Claesson-Welsh

Åke Wiberg Stiftelse (M21-0109)

  • Sofia Nordling

Svenska Sällskapet för Medicinsk Forskning

  • Elin Sjöberg

Svenska Sällskapet för Medicinsk Forskning (201912)

  • Mark Richards

European Molecular Biology Organization (ALTF 923-2016)

  • Mark Richards

Knut och Alice Wallenbergs Stiftelse (2020.0057)

  • Lena Claesson-Welsh

Knut och Alice Wallenbergs Stiftelse (2019.0276)

  • Lena Claesson-Welsh

Fondation Leducq (17 CVD 03)

  • Lena Claesson-Welsh

Cancerfonden (19 0119 Pj)

  • Lena Claesson-Welsh

Cancerfonden (19 0118 Us)

  • Lena Claesson-Welsh

Cancerfonden (20 1086 Pj)

  • Marleen Gloger
  • Katarzyna Koltowska

Knut och Alice Wallenbergs Stiftelse (2017.0144)

  • Katarzyna Koltowska

Ragnar Söderbergs stiftelse (M13/17)

  • Katarzyna Koltowska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gou Young Koh, Institute of Basic Science and Korea Advanced Institute of Science and Technology (KAIST), Korea (South), Republic of

Ethics

Animal experimentation: In vivo animal experiments were carried out in accordance with the ethical permit provided by the Committee on the Ethics of Animal Experiments of the University of Uppsala (permit 6789/18).

Version history

  1. Received: March 10, 2022
  2. Preprint posted: March 16, 2022 (view preprint)
  3. Accepted: July 20, 2022
  4. Accepted Manuscript published: July 21, 2022 (version 1)
  5. Version of Record published: August 3, 2022 (version 2)

Copyright

© 2022, Richards et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,233
    views
  • 505
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Richards
  2. Emmanuel Nwadozi
  3. Sagnik Pal
  4. Pernilla Martinsson
  5. Mika Kaakinen
  6. Marleen Gloger
  7. Elin Sjöberg
  8. Katarzyna Koltowska
  9. Christer Betsholtz
  10. Lauri Eklund
  11. Sofia Nordling
  12. Lena Claesson-Welsh
(2022)
Claudin5 protects the peripheral endothelial barrier in an organ and vessel type-specific manner
eLife 11:e78517.
https://doi.org/10.7554/eLife.78517

Share this article

https://doi.org/10.7554/eLife.78517

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.