A connectomics-based taxonomy of mammals

  1. Laura E Suarez  Is a corresponding author
  2. Yossi Yovel
  3. Martijn P van den Heuvel
  4. Olaf Sporns
  5. Yaniv Assaf
  6. Guillaume Lajoie
  7. Bratislav Misic  Is a corresponding author
  1. McGill University, Canada
  2. Tel Aviv University, Israel
  3. Vrije Universiteit Amsterdam, Netherlands
  4. Indiana University, United States
  5. Mila - Quebec Artificial Intelligence Institute, Canada

Abstract

Mammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle for the comparison of neural architectures have been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another. Here we comprehensively chart connectome organization across the mammalian phylogenetic spectrum using a common reconstruction protocol. We analyze the mammalian MRI (MaMI) data set, a database that encompasses high-resolution ex vivo structural and diffusion magnetic resonance imaging (MRI) scans of 124 species across 12 taxonomic orders and 5 superorders, collected using a unified MRI protocol. We assess similarity between species connectomes using two methods: similarity of Laplacian eigenspectra and similarity of multiscale topological features. We find greater inter-species similarities among species within the same taxonomic order, suggesting that connectome organization reflects established taxonomic relationships defined by morphology and genetics. While all connectomes retain hallmark global features and relative proportions of connection classes, inter-species variation is driven by local regional connectivity profiles. By encoding connectomes into a common frame of reference, these findings establish a foundation for investigating how neural circuits change over phylogeny, forging a link from genes to circuits to behaviour.

Data availability

The MaMI data set was originally collected and analyzed by Assaf and colleagues in Assaf, Y. et al., 2020 , Nat. Neurosci. (doi: https://doi.org/10.1038/s41593-020-0641-7). We have included the connectivity matrices used in this study in a public repository available at \url{https://doi.org/10.5281/zenodo.7143143}.

The following data sets were generated

Article and author information

Author details

  1. Laura E Suarez

    Montréal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    laura.suarez@mail.mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0700-1500
  2. Yossi Yovel

    School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Martijn P van den Heuvel

    Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Olaf Sporns

    Psychological and Brain Sciences, Indiana University, Indiana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yaniv Assaf

    School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6941-1535
  6. Guillaume Lajoie

    Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Bratislav Misic

    Montréal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    bratislav.misic@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0307-2862

Funding

Natural Sciences and Engineering Research Council of Canada

  • Bratislav Misic

National Science Foundation - BSF

  • Yaniv Assaf

Canadian Institutes of Health Research

  • Bratislav Misic

Fondation Brain Canada (Future Leaders Fund)

  • Bratislav Misic

Canada Research Chairs

  • Bratislav Misic

Michael J. Fox Foundation for Parkinson's Research

  • Bratislav Misic

Healthy Brains for Healthy Lives

  • Bratislav Misic

Natural Sciences and Engineering Research Council of Canada

  • Guillaume Lajoie

Canada Research Chairs

  • Guillaume Lajoie

Canadian Institute for Advanced Research

  • Guillaume Lajoie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris I Baker, National Institute of Mental Health, National Institutes of Health, United States

Publication history

  1. Preprint posted: March 12, 2022 (view preprint)
  2. Received: March 14, 2022
  3. Accepted: November 4, 2022
  4. Accepted Manuscript published: November 7, 2022 (version 1)
  5. Version of Record published: November 22, 2022 (version 2)

Copyright

© 2022, Suarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,119
    Page views
  • 188
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura E Suarez
  2. Yossi Yovel
  3. Martijn P van den Heuvel
  4. Olaf Sporns
  5. Yaniv Assaf
  6. Guillaume Lajoie
  7. Bratislav Misic
(2022)
A connectomics-based taxonomy of mammals
eLife 11:e78635.
https://doi.org/10.7554/eLife.78635

Further reading

    1. Neuroscience
    Laura K Globig, Nora Holtz, Tali Sharot
    Research Article

    The powerful allure of social media platforms has been attributed to the human need for social rewards. Here, we demonstrate that the spread of misinformation on such platforms is facilitated by existing social ‘carrots’ (e.g., ‘likes’) and ‘sticks’ (e.g., ‘dislikes’) that are dissociated from the veracity of the information shared. Testing 951 participants over six experiments, we show that a slight change to the incentive structure of social media platforms, such that social rewards and punishments are contingent on information veracity, produces a considerable increase in the discernment of shared information. Namely, an increase in the proportion of true information shared relative to the proportion of false information shared. Computational modeling (i.e., drift-diffusion models) revealed the underlying mechanism of this effect is associated with an increase in the weight participants assign to evidence consistent with discerning behavior. The results offer evidence for an intervention that could be adopted to reduce misinformation spread, which in turn could reduce violence, vaccine hesitancy and political polarization, without reducing engagement.

    1. Developmental Biology
    2. Neuroscience
    Simone Rey, Henrike Ohm ... Christian Klämbt
    Research Article

    Neuronal information conductance often involves the transmission of action potentials. The spreading of action potentials along the axonal process of a neuron is based on three physical parameters: The axial resistance of the axon, the axonal insulation by glial membranes, and the positioning of voltage-gated ion channels. In vertebrates, myelin and channel clustering allow fast saltatory conductance. Here we show that in Drosophila melanogaster voltage-gated sodium and potassium channels, Para and Shal, co-localize and cluster in an area resembling the axon initial segment. The local enrichment of Para but not of Shal localization depends on the presence of peripheral wrapping glial cells. In larvae, relatively low levels of Para channels are needed to allow proper signal transduction and nerves are simply wrapped by glial cells. In adults, the concentration of Para increases and is prominently found at the axon initial segment of motor neurons. Concomitantly, these axon domains are covered by a mesh of glial processes forming a lacunar structure that possibly serves as an ion reservoir. Directly flanking this domain glial processes forming the lacunar area appear to collapse and closely apposed stacks of glial cell processes can be detected, resembling a myelin-like insulation. Thus, Drosophila development may reflect the evolution of myelin which forms in response to increased levels of clustered voltage-gated ion channels.