CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens

Abstract

Megakaryocytes (MKs) continuously produce platelets to support hemostasis and form a niche for hematopoietic stem cell maintenance in the bone marrow. MKs are also involved in inflammation responses; however, the mechanism remains poorly understood. Using single-cell sequencing, we identified a CXCR4 highly expressed MK subpopulation, which exhibited both MK-specific and immune characteristics. CXCR4high MKs interacted with myeloid cells to promote their migration and stimulate the bacterial phagocytosis of macrophages and neutrophils by producing TNFα and IL-6. CXCR4high MKs were also capable of phagocytosis, processing and presenting antigens to activate T cells. Furthermore, CXCR4high MKs also egressed circulation and infiltrated into the spleen, liver, and lung upon bacterial infection. Ablation of MKs suppressed the innate immune response and T cell activation to impair the anti-bacterial effects in mice under the Listeria monocytogenes challenge. Using hematopoietic stem/progenitor cell lineage-tracing mouse lines, we show that CXCR4high MKs were generated from infection-induced emergency megakaryopoiesis in response to bacterial infection. Overall, we identify the CXCR4high MKs, which regulate host-defense immune response against bacterial infection.

Data availability

The scRNA-seq data generated in this study are deposited in GEO (GSE168224, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168224). The code used in the study can be accessed at GitHub (https://https://github.com/JYCathyXie/MK_infection).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jin Wang

    Department of Endocrinology and Metabolism, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiayi Xie

    RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Daosong Wang

    Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xue Han

    RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Minqi Chen

    RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guojun Shi

    Department of Endocrinology and Metabolism, Sun Yat-sen University, Guangzhou, China
    For correspondence
    shigj6@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Linjia Jiang

    RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
    For correspondence
    jianglj7@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8854-2610
  8. Meng Zhao

    RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
    For correspondence
    zhaom38@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7909-7594

Funding

National Key Research and Development Program of China (2018YFA0107200)

  • Meng Zhao

National Natural Science Foundation of China (82170112)

  • Meng Zhao

National Natural Science Foundation of China (81900101)

  • Jin Wang

China Postdoctoral Science Foundation (2021M693614)

  • Jin Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to protocols approved by theInstitutional Animal Care and Use Committee.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,850
    views
  • 452
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Wang
  2. Jiayi Xie
  3. Daosong Wang
  4. Xue Han
  5. Minqi Chen
  6. Guojun Shi
  7. Linjia Jiang
  8. Meng Zhao
(2022)
CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens
eLife 11:e78662.
https://doi.org/10.7554/eLife.78662

Share this article

https://doi.org/10.7554/eLife.78662

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.

    1. Cell Biology
    Eleanor Martin, Rossana Girardello ... Alexander Ludwig
    Research Article

    Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to an increase in membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. The dynamic assembly and disassembly of caveolae has also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and caveolae-mediated mechanotransduction is poorly understood. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disassembles the caveolar protein coat. Membrane tension also dislodges caveolin-1 from focal adhesion proteins and several mechanosensitive cortical actin regulators including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 are associated with caveolin-1 in a membrane tension-dependent manner, and that ARHGAP29 regulates caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.