Geometric control of Myosin-II orientation during axis elongation

  1. Matthew F Lefebvre
  2. Nikolas H Claussen
  3. Noah P Mitchell
  4. Hannah J Gustafson
  5. Sebastian J Streichan  Is a corresponding author
  1. University of California, Santa Barbara, United States

Abstract

The actomyosin cytoskeleton is a crucial driver of morphogenesis. Yet how the behavior of largescale cytoskeletal patterns in deforming tissues emerges from the interplay of geometry, genetics, and mechanics remains incompletely understood. Convergent extension in D. melanogaster embryos provides the opportunity to establish a quantitative understanding of the dynamics of anisotropic non-muscle myosin II. Cell-scale analysis of protein localization in fixed embryos suggests that gene expression patterns govern myosin anisotropy via complex rules. However, technical limitations have impeded quantitative and dynamic studies of this process at the whole embryo level, leaving the role of geometry open. Here we combine in toto live imaging with quantitative analysis of molecular dynamics to characterize the distribution of myosin anisotropy and the corresponding genetic patterning. We found pair rule gene expression continuously deformed, flowing with the tissue frame. In contrast, myosin anisotropy orientation remained approximately static, and was only weakly deflected from the stationary dorsal-ventral axis of the embryo. We propose that myosin is recruited by a geometrically defined static source, potentially related to the embryoscale epithelial tension, and account for transient deflections by cytoskeletal turnover and junction reorientation by flow. With only one parameter, this model quantitatively accounts for the time course of myosin anisotropy orientation in wild-type, twist, and even-skipped embryos as well as embryos with perturbed egg geometry. Geometric patterning of the cytoskeleton suggests a simple physical strategy to ensure a robust flow and formation of shape.

Data availability

All data for this article is available publicly without any restrictions. In our article, we make use of two datasets: (1) confocal microscopy data of FRAP experiments, which is available on the Dryad data repository https://doi.org/10.25349/D94C8M. (2) Lightsheet microscopy data of entire embryos. The data we use in the current publication is a subset of a larger dataset, the 'Morphodynamic atlas of Drosophila development', which is publicly available on the Dryad data repository https://doi.org/10.25349/D9WW43. This collection is indexed by the fly genotype and fluorescent marker imaged, so that the movies and images used in the current publication can be found easily. Lightsheet microscopy integrates microscopy and computational processing and its computational pipeline creates intermediate, 'raw' data files, which are of very large size (TBs for a single movie). This raw data is available upon request from the corresponding author without restriction or need for a specific research proposal. The analysis code used is available on GitHub https://github.com/nikolas-claussen/Geometric-control-of-Myosin-II-orientation-during-axis-elongation.

The following data sets were generated

Article and author information

Author details

  1. Matthew F Lefebvre

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikolas H Claussen

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Noah P Mitchell

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hannah J Gustafson

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sebastian J Streichan

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    streicha@ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6105-9087

Funding

National Institutes of Health (5 R35 GM138203)

  • Sebastian J Streichan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pierre Sens, Institut Curie, CNRS UMR168, France

Version history

  1. Preprint posted: January 12, 2022 (view preprint)
  2. Received: March 20, 2022
  3. Accepted: December 13, 2022
  4. Accepted Manuscript published: January 30, 2023 (version 1)
  5. Accepted Manuscript updated: February 2, 2023 (version 2)
  6. Version of Record published: February 20, 2023 (version 3)

Copyright

© 2023, Lefebvre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,381
    views
  • 192
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew F Lefebvre
  2. Nikolas H Claussen
  3. Noah P Mitchell
  4. Hannah J Gustafson
  5. Sebastian J Streichan
(2023)
Geometric control of Myosin-II orientation during axis elongation
eLife 12:e78787.
https://doi.org/10.7554/eLife.78787

Share this article

https://doi.org/10.7554/eLife.78787

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Qin Ni, Sean X Sun
    Insight

    An influx of water molecules can help immune cells called neutrophils to move to where they are needed in the body.

    1. Cell Biology
    2. Physics of Living Systems
    Tamas L Nagy, Evelyn Strickland, Orion D Weiner
    Research Article

    While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.