Meta-Research: How parenthood contributes to gender gaps in academia

  1. Xiang Zheng
  2. Haimiao Yuan
  3. Chaoqun Ni  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. University of Iowa, United States

Abstract

Being a parent has long been associated with gender disparities in academia. However, details of the mechanisms by which parenthood and gender influence academic career achievement and progression are not fully understood. Here, using data from a survey of 7,764 academics in North America and publication data from the Web of Science, we analyze gender differences in parenthood and academic achievements and explore the influence of work-family conflict and partner support on these gender gaps. Our results suggest that gender gaps in academic achievement are, in fact, 'parenthood gender gaps'. Specifically, we found significant gender gaps in all measures of academic achievement (both objective and subjective) in the parent group but not in the non-parent group. Mothers are more likely than fathers to experience higher levels of work-family conflict and to receive lower levels of partner support, contributing significantly to the gender gaps in academic achievement for the parent group. We also discuss possible interventions and actions for reducing gender gaps in academia.

Data availability

All data needed to evaluate the conclusions in the paper are present here and in the Supplementary Materials. Aggregated or de-identified data on variables used in this study is available on GitHub (https://github.com/UWMadisonMetaScience/parenting).

Article and author information

Author details

  1. Xiang Zheng

    University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6619-5504
  2. Haimiao Yuan

    University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chaoqun Ni

    University of Wisconsin-Madison, Madison, United States
    For correspondence
    chaoqun.ni@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-7602

Funding

Wisconsin Alumni Research Foundation

  • Xiang Zheng
  • Chaoqun Ni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The survey of this study was approved by the IRB board at the University of Iowa (IRB ID#201901776)IRB-02DHHS Registration # IRB00000100,Univ of Iowa,DHHS Federalwide Assurance # FWA00003007Below is the consent information from the approved IRB:You are invited to participate in a research project being conducted at the University of Iowa regarding the career development of researchers. The primary purpose of this study is to investigate the relationship between marriage, parenthood, gender, and the career trajectories of researchers. We aim to understand whether, and to what degree, these factors are related to the professional development of researchers. This project will provide implications for future scientists about their work-life management and career development, as well as related stakeholders, for the purpose of creating a better environment that will facilitate the development of researchers' careers.If you agree to participate, we would like you to complete an online survey (found below). You are free to stop taking this survey if you prefer not to answer any question. It will take approximately 15 to 20 minutes. Confidentiality research data will be kept anonymous and secure (encrypted and stored in a locked file) for up to 10 years and will then be deleted.Taking part in this research study is entirely voluntary. If you do not wish to participate in this study, you are free to decline. You may also withdraw from this project at any time, without consequences or recrimination. You will NOT be asked for an explanation for your withdrawal. Should you choose to withdraw after finishing the survey, please advise the project manager or any member of the research team. In the case of early withdrawal from the study, data will be destroyed immediately.If you have any questions about this project, please contact Haimiao Yuan (haimiao-yuan@uiowa.edu) at the University of Iowa. If you have questions about the rights of research subjects, please contact the Human Subjects Office, 105 Hardin Library for the Health Sciences, 600 Newton Rd, The University of Iowa, Iowa City, IA 52242-1098, (319) 335-6564, or e-mail irb@uiowa.edu. Thank you very much for your consideration.

Copyright

© 2022, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,099
    views
  • 370
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiang Zheng
  2. Haimiao Yuan
  3. Chaoqun Ni
(2022)
Meta-Research: How parenthood contributes to gender gaps in academia
eLife 11:e78909.
https://doi.org/10.7554/eLife.78909
  1. Further reading

Further reading

    1. Computational and Systems Biology
    Nobuhisa Umeki, Yoshiyuki Kabashima, Yasushi Sako
    Research Article

    The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.