The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5

Abstract

UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; source data files for all figures have been provided.

Article and author information

Author details

  1. Ryota Miyashita

    Division of Cancer Cell Biology, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1452-8829
  2. Atsuya Nishiyama

    Division of Cancer Cell Biology, University of Tokyo, Tokyo, Japan
    For correspondence
    uanishiyama@g.ecc.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8416-3776
  3. Weihua Qin

    Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoshie Chiba

    Division of Cancer Cell Biology, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Satomi Kori

    Structural Biology Laboratory, Yokohama City University, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Norie Kato

    Structural Biology Laboratory, Yokohama City University, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Chieko Konishi

    Division of Cancer Cell Biology, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Soichiro Kumamoto

    Division of Cancer Cell Biology, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Hiroko Kozuka-Hata

    Institute of Medical Science, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Masaaki Oyama

    Institute of Medical Science, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Yoshitaka Kawasoe

    Department of Biology, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Toshiki Tsurimoto

    Department of Biology, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Tatsuro S Takahashi

    Department of Biology, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Heinrich Leonhardt

    Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Kyohei Arita

    Structural Biology Laboratory, Yokohama City University, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  16. Makoto Nakanishi

    Division of Cancer Cell Biology, University of Tokyo, Tokyo, Japan
    For correspondence
    mkt-naka@g.ecc.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6707-3584

Funding

MEXT/JSPS (JP19H05740)

  • Makoto Nakanishi

MEXT/JSPS (JP19H03143)

  • Atsuya Nishiyama

MEXT/JSPS (JP19H05285)

  • Atsuya Nishiyama

MEXT/JSPS (JP16H06578)

  • Masaaki Oyama

MEXT/JSPS (JP19H05741)

  • Kyohei Arita

MEXT/JSPS (20H03186)

  • Tatsuro S Takahashi

MEXT/JSPS (20H05392)

  • Tatsuro S Takahashi

MEXT/JSPS (19K16042)

  • Yoshitaka Kawasoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Miyashita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,719
    views
  • 280
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryota Miyashita
  2. Atsuya Nishiyama
  3. Weihua Qin
  4. Yoshie Chiba
  5. Satomi Kori
  6. Norie Kato
  7. Chieko Konishi
  8. Soichiro Kumamoto
  9. Hiroko Kozuka-Hata
  10. Masaaki Oyama
  11. Yoshitaka Kawasoe
  12. Toshiki Tsurimoto
  13. Tatsuro S Takahashi
  14. Heinrich Leonhardt
  15. Kyohei Arita
  16. Makoto Nakanishi
(2023)
The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5
eLife 12:e79013.
https://doi.org/10.7554/eLife.79013

Share this article

https://doi.org/10.7554/eLife.79013

Further reading

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.