Experience-driven rate modulation is reinstated during hippocampal replay

  1. Margot Tirole  Is a corresponding author
  2. Marta Huelin Gorriz  Is a corresponding author
  3. Masahiro Takigawa
  4. Lilia Kukovska
  5. Daniel Bendor  Is a corresponding author
  1. University College London, United Kingdom

Abstract

Replay, the sequential reactivation within a neuronal ensemble, is a central hippocampal mechanism postulated to drive memory processing. While both rate and place representations are used by hippocampal place cells to encode behavioral episodes, replay has been largely defined by only the latter – based on the fidelity of sequential activity across neighboring place fields. Here we show that dorsal CA1 place cells in rats can modulate their firing rate between replay events of two different contexts. This experience-dependent phenomenon mirrors the same pattern of rate modulation observed during behavior and can be used independently from place information within replay sequences to discriminate between contexts. Our results reveal the existence of two complementary neural representations available for memory processes.

Data availability

Data availabilityThe data used in this manuscript are available on DRYAD [doi:10.5061/dryad.ksn02v76h].Code availabilityAll custom-written code is available on GitHub [https://github.com/bendor-lab/analysis-pipeline].

Article and author information

Author details

  1. Margot Tirole

    University College London, London, United Kingdom
    For correspondence
    Margot.tirole.14@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0674-6690
  2. Marta Huelin Gorriz

    University College London, London, United Kingdom
    For correspondence
    Marta.Huelin.16@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0281-0627
  3. Masahiro Takigawa

    University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lilia Kukovska

    University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Bendor

    University College London, London, United Kingdom
    For correspondence
    d.bendor@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6621-793X

Funding

Biotechnology and Biological Sciences Research Council (BB/M009513/1)

  • Margot Tirole

Biotechnology and Biological Sciences Research Council (BB/T005475/1)

  • Daniel Bendor

European Research Council (CHIME)

  • Daniel Bendor

Human Frontier Science Program (RGY0067/2016)

  • Daniel Bendor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures and post operative care were approved and carried out in accordance with the UK Home Office, subject to the restrictions and provisions contained within the Animal Scientific Procedures Act of 1986. Experiments were conducted under PPL P61EA6A72 (Bendor). Animals were deeply anaesthetised under isoflurane anaesthesia (1.5-3% at 2L/min) during surgery, and every effort was made to minimize suffering.

Copyright

© 2022, Tirole et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,518
    views
  • 353
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margot Tirole
  2. Marta Huelin Gorriz
  3. Masahiro Takigawa
  4. Lilia Kukovska
  5. Daniel Bendor
(2022)
Experience-driven rate modulation is reinstated during hippocampal replay
eLife 11:e79031.
https://doi.org/10.7554/eLife.79031

Share this article

https://doi.org/10.7554/eLife.79031

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kazuya Ono, Amandine Jarysta ... Basile Tarchini
    Research Article

    Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered – swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.

    1. Neuroscience
    J Wesley Maddox, Gregory J Ordemann ... Amy Lee
    Research Article

    In congenital stationary night blindness, type 2 (CSNB2)—a disorder involving the Cav1.4 (L-type) Ca2+ channel—visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrels, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e. cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.