Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila

  1. Daichi Yamada
  2. Daniel Bushey
  3. Feng Li
  4. Karen L Hibbard
  5. Megan Sammons
  6. Jan Funke
  7. Ashok Litwin-Kumar
  8. Toshihide Hige  Is a corresponding author
  9. Yoshinori Aso  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. Janelia Research Campus, United States
  3. Columbia University, United States

Abstract

Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective 'teacher' by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the 'student' compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.

Data availability

The confocal images of expression patterns are available online (http://www.janelia.org/split-gal4). The source data for each figure are included in the manuscript.

Article and author information

Author details

  1. Daichi Yamada

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Bushey

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9258-6579
  3. Feng Li

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6658-9175
  4. Karen L Hibbard

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2001-6099
  5. Megan Sammons

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4516-5928
  6. Jan Funke

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4388-7783
  7. Ashok Litwin-Kumar

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2422-6576
  8. Toshihide Hige

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    hige@email.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-3192
  9. Yoshinori Aso

    Janelia Research Campus, Ashburn, United States
    For correspondence
    asoy@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2939-1688

Funding

NIH (R01DC018874)

  • Toshihide Hige

NSF (DBI-1707398)

  • Ashok Litwin-Kumar

Toyobo Biotechnology Foundation Postdoctoral Fellowship

  • Daichi Yamada

Japan Society for the Promotion of Science Overseas Research Fellowship

  • Daichi Yamada

HHMI

  • Daniel Bushey
  • Feng Li
  • Karen L Hibbard
  • Megan Sammons
  • Jan Funke
  • Yoshinori Aso

NSF (2034783)

  • Toshihide Hige

BSF (2019026)

  • Toshihide Hige

UNC Junior Faculty Development Award

  • Toshihide Hige

Burroughs Wellcome Foundation

  • Ashok Litwin-Kumar

Gatsby Charitable Foundation

  • Ashok Litwin-Kumar

McKnight Endowment Fund

  • Ashok Litwin-Kumar

Simons Collaboration on the Global Brain

  • Ashok Litwin-Kumar
  • Yoshinori Aso

NIH (R01EB029858)

  • Ashok Litwin-Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Yamada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,815
    views
  • 410
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daichi Yamada
  2. Daniel Bushey
  3. Feng Li
  4. Karen L Hibbard
  5. Megan Sammons
  6. Jan Funke
  7. Ashok Litwin-Kumar
  8. Toshihide Hige
  9. Yoshinori Aso
(2023)
Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila
eLife 12:e79042.
https://doi.org/10.7554/eLife.79042

Share this article

https://doi.org/10.7554/eLife.79042

Further reading

    1. Neuroscience
    Devanshi Piyush Shah, Pallavi Raj Sharma ... Arnab Barik
    Research Article

    Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood. Here, we describe how the dorsal lateral septum (dLS), a forebrain limbic nucleus, facilitates SIA through its downstream targets in the lateral hypothalamic area (LHA) of mice. Taking advantage of transsynaptic viral-genetic, optogenetic, and chemogenetic techniques, we show that the dLS→LHA circuitry is sufficient to drive analgesia and is required for SIA. Furthermore, our results reveal that the dLS→LHA pathway is opioid-dependent and modulates pain through the pro-nociceptive neurons in the rostral ventromedial medulla (RVM). Remarkably, we found that the inhibitory dLS neurons are recruited specifically when the mice struggle to escape under restraint and, in turn, inhibit excitatory LHA neurons. As a result, the RVM neurons downstream of LHA are disengaged, thus suppressing nociception. Together, we delineate a poly-synaptic pathway that can transform escape behavior in mice under restraint to acute stress into analgesia.

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.