Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila

  1. Daichi Yamada
  2. Daniel Bushey
  3. Feng Li
  4. Karen L Hibbard
  5. Megan Sammons
  6. Jan Funke
  7. Ashok Litwin-Kumar
  8. Toshihide Hige  Is a corresponding author
  9. Yoshinori Aso  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. Janelia Research Campus, United States
  3. Columbia University, United States

Abstract

Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective 'teacher' by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the 'student' compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.

Data availability

The confocal images of expression patterns are available online (http://www.janelia.org/split-gal4). The source data for each figure are included in the manuscript.

Article and author information

Author details

  1. Daichi Yamada

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Bushey

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9258-6579
  3. Feng Li

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6658-9175
  4. Karen L Hibbard

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2001-6099
  5. Megan Sammons

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4516-5928
  6. Jan Funke

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4388-7783
  7. Ashok Litwin-Kumar

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2422-6576
  8. Toshihide Hige

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    hige@email.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-3192
  9. Yoshinori Aso

    Janelia Research Campus, Ashburn, United States
    For correspondence
    asoy@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2939-1688

Funding

NIH (R01DC018874)

  • Toshihide Hige

NSF (DBI-1707398)

  • Ashok Litwin-Kumar

Toyobo Biotechnology Foundation Postdoctoral Fellowship

  • Daichi Yamada

Japan Society for the Promotion of Science Overseas Research Fellowship

  • Daichi Yamada

HHMI

  • Daniel Bushey
  • Feng Li
  • Karen L Hibbard
  • Megan Sammons
  • Jan Funke
  • Yoshinori Aso

NSF (2034783)

  • Toshihide Hige

BSF (2019026)

  • Toshihide Hige

UNC Junior Faculty Development Award

  • Toshihide Hige

Burroughs Wellcome Foundation

  • Ashok Litwin-Kumar

Gatsby Charitable Foundation

  • Ashok Litwin-Kumar

McKnight Endowment Fund

  • Ashok Litwin-Kumar

Simons Collaboration on the Global Brain

  • Ashok Litwin-Kumar
  • Yoshinori Aso

NIH (R01EB029858)

  • Ashok Litwin-Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Yamada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,788
    views
  • 405
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daichi Yamada
  2. Daniel Bushey
  3. Feng Li
  4. Karen L Hibbard
  5. Megan Sammons
  6. Jan Funke
  7. Ashok Litwin-Kumar
  8. Toshihide Hige
  9. Yoshinori Aso
(2023)
Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila
eLife 12:e79042.
https://doi.org/10.7554/eLife.79042

Share this article

https://doi.org/10.7554/eLife.79042

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.