Aminomethanesulfonic acid illuminates the boundary between full and partial agonists of the pentameric glycine receptor

  1. Josip Ivica
  2. Hongtao Zhu
  3. Remigijus Lape
  4. Eric Gouaux  Is a corresponding author
  5. Lucia G Sivilotti  Is a corresponding author
  1. University College London, United Kingdom
  2. Oregon Health and Science University Hospital, United States

Abstract

To clarify the determinants of agonist efficacy in pentameric ligand-gated ion channels we examined a new compound, aminomethanesulfonic acid (AMS), a molecule intermediate in structure between glycine and taurine. Despite wide availability, to date there are no reports of AMS action on glycine receptors, perhaps because AMS is unstable at physiological pH. Here we show that at pH 5, AMS is an efficacious agonist, eliciting in zebrafish α1 glycine receptors a maximum single channel open probability of 0.85, much greater than that of β-alanine (0.54) or taurine (0.12), and second only to that of glycine itself (0.96). Thermodynamic cycle analysis of the efficacy of these closely related agonists shows supra-additive interaction between changes in the length of the agonist molecule and the size of the anionic moiety. Single particle cryo-EM structures of AMS-bound glycine receptors show that the AMS-bound agonist pocket is as compact as with glycine, and three-dimensional classification demonstrates that the channel populates the open and the desensitized states, like glycine, but not the closed intermediate state associated with the weaker partial agonists, β-alanine and taurine. Because AMS is on the cusp between full and partial agonists, it provides a new tool to help us understand agonist action in the pentameric superfamily of ligand-gated ion channels.

Data availability

The coordinates and volumes for the cryo-EM data have been deposited in the Electron Microscopy Data Bank under accession codes EMD-26316, EMD-26315, and EMD-26317. The coordinates have been deposited in the Protein Data Bank under accession codes 7U2N, 7U2M. and 7U2O.All data generated during this study is included in the manuscript and supporting files, Source data spreadsheets are provided for the electrophysiology data.

The following data sets were generated

Article and author information

Author details

  1. Josip Ivica

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hongtao Zhu

    Vollum Institute, Oregon Health and Science University Hospital, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1522-0500
  3. Remigijus Lape

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Gouaux

    Vollum Institute, Oregon Health and Science University Hospital, Portland, United States
    For correspondence
    gouauxe@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8549-2360
  5. Lucia G Sivilotti

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    l.sivilotti@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7943-604X

Funding

Medical Research Council (Project grant MR/R009074/1)

  • Lucia G Sivilotti

National Institutes of Health (R01 GM100400)

  • Eric Gouaux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcel P Goldschen-Ohm, University of Texas at Austin, United States

Version history

  1. Received: March 31, 2022
  2. Preprint posted: May 4, 2022 (view preprint)
  3. Accepted: August 16, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Version of Record published: September 9, 2022 (version 2)

Copyright

© 2022, Ivica et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 530
    Page views
  • 194
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josip Ivica
  2. Hongtao Zhu
  3. Remigijus Lape
  4. Eric Gouaux
  5. Lucia G Sivilotti
(2022)
Aminomethanesulfonic acid illuminates the boundary between full and partial agonists of the pentameric glycine receptor
eLife 11:e79148.
https://doi.org/10.7554/eLife.79148

Share this article

https://doi.org/10.7554/eLife.79148

Further reading

    1. Structural Biology and Molecular Biophysics
    Fouad Ouasti, Maxime Audin ... Francoise Ochsenbein
    Research Article

    Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Matthew R Marunde, Harrison A Fuchs ... Catherine A Musselman
    Research Article Updated

    Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized ‘codes’ that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the ‘histone code’ concept and interrogate it at the nucleosome level.