Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality

  1. Brian Kim
  2. Seth Haney
  3. Ana P Milan
  4. Shruti Joshi
  5. Zane Aldworth
  6. Nikolai Rulkov
  7. Alexander T Kim
  8. Maxim Bazhenov  Is a corresponding author
  9. Mark A Stopfer  Is a corresponding author
  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  2. University of California, San Diego, United States
  3. Amsterdam University Medical Centers, Netherlands

Abstract

Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching. Further, each motif undergoes its own form of sensory adaptation when activated by repeated plume-like odor pulses. A computational model constrained by our recordings revealed that organizing responses into multiple motifs provides substantial benefits for classifying odors and processing complex odor plumes: each motif contributes uniquely to encode the plume's composition and structure. Multiple motifs and motif switching further improve odor classification by expanding coding dimensionality. Our model demonstrated these response features could provide benefits for olfactory navigation, including determining the distance to an odor source.

Data availability

All data generated or analyzed during this study have been deposited at Open Science Framework and can be accessed here: https://osf.io/8bs72/

Article and author information

Author details

  1. Brian Kim

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seth Haney

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana P Milan

    Department of Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Shruti Joshi

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zane Aldworth

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0647-8465
  6. Nikolai Rulkov

    Biocircuits Institute, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander T Kim

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maxim Bazhenov

    Biocircuits Institute, University of California, San Diego, La Jolla, United States
    For correspondence
    mbazhenov@health.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1936-0570
  9. Mark A Stopfer

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    For correspondence
    stopferm@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9200-1884

Funding

Office of Naval Research (N00014-16-1-2829)

  • Maxim Bazhenov

National Institutes of Health (RF1MH117155)

  • Maxim Bazhenov

National Institutes of Health (R01NS109553)

  • Maxim Bazhenov

National Science Foundation (IIS-1724405)

  • Maxim Bazhenov

Obra Social La Caixa (ID 100010434 with code LCF/BQ/ES15/10360004)

  • Ana P Milan

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Intramural)

  • Mark A Stopfer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Piali Sengupta, Brandeis University, United States

Version history

  1. Received: April 1, 2022
  2. Preprint posted: April 12, 2022 (view preprint)
  3. Accepted: January 31, 2023
  4. Accepted Manuscript published: January 31, 2023 (version 1)
  5. Version of Record published: February 13, 2023 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,398
    views
  • 232
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Kim
  2. Seth Haney
  3. Ana P Milan
  4. Shruti Joshi
  5. Zane Aldworth
  6. Nikolai Rulkov
  7. Alexander T Kim
  8. Maxim Bazhenov
  9. Mark A Stopfer
(2023)
Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality
eLife 12:e79152.
https://doi.org/10.7554/eLife.79152

Share this article

https://doi.org/10.7554/eLife.79152

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.