Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production

  1. Seok Hee Lee
  2. Xiaowei Liu
  3. David Jimenez-Morales
  4. Paolo F Rinaudo  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Stanford University, United States

Abstract

In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most of IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and culture in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocyst manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of LDH-B and MCT1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism is a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file;

Article and author information

Author details

  1. Seok Hee Lee

    Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaowei Liu

    Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Jimenez-Morales

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paolo F Rinaudo

    Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
    For correspondence
    rinaudop@obgyn.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6528-6009

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 R01HD092267)

  • Paolo F Rinaudo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the Institutional Animal Care and Use Committee (#AN181614-03) of the University of California, San Francisco,

Reviewing Editor

  1. Paul M Wassarman, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: April 1, 2022
  2. Preprint posted: April 14, 2022 (view preprint)
  3. Accepted: September 14, 2022
  4. Accepted Manuscript published: September 15, 2022 (version 1)
  5. Version of Record published: September 28, 2022 (version 2)

Copyright

© 2022, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 521
    Page views
  • 159
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seok Hee Lee
  2. Xiaowei Liu
  3. David Jimenez-Morales
  4. Paolo F Rinaudo
(2022)
Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production
eLife 11:e79153.
https://doi.org/10.7554/eLife.79153
  1. Further reading

Further reading

    1. Developmental Biology
    Yanling Xin, Qinghai He ... Shuyi Chen
    Research Article

    N 6-methyladenosine (m6A) is the most prevalent mRNA internal modification and has been shown to regulate the development, physiology, and pathology of various tissues. However, the functions of the m6A epitranscriptome in the visual system remain unclear. In this study, using a retina-specific conditional knockout mouse model, we show that retinas deficient in Mettl3, the core component of the m6A methyltransferase complex, exhibit structural and functional abnormalities beginning at the end of retinogenesis. Immunohistological and single-cell RNA sequencing (scRNA-seq) analyses of retinogenesis processes reveal that retinal progenitor cells (RPCs) and Müller glial cells are the two cell types primarily affected by Mettl3 deficiency. Integrative analyses of scRNA-seq and MeRIP-seq data suggest that m6A fine-tunes the transcriptomic transition from RPCs to Müller cells by promoting the degradation of RPC transcripts, the disruption of which leads to abnormalities in late retinogenesis and likely compromises the glial functions of Müller cells. Overexpression of m6A-regulated RPC transcripts in late RPCs partially recapitulates the Mettl3-deficient retinal phenotype. Collectively, our study reveals an epitranscriptomic mechanism governing progenitor-to-glial cell transition during late retinogenesis, which is essential for the homeostasis of the mature retina. The mechanism revealed in this study might also apply to other nervous systems.

    1. Developmental Biology
    2. Genetics and Genomics
    Xiaodong Li, Patrick J Gordon ... Edward M Levine
    Research Article

    An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.