Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production

  1. Seok Hee Lee
  2. Xiaowei Liu
  3. David Jimenez-Morales
  4. Paolo F Rinaudo  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Stanford University, United States

Abstract

In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most of IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and culture in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocyst manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of LDH-B and MCT1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism is a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file;

Article and author information

Author details

  1. Seok Hee Lee

    Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaowei Liu

    Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Jimenez-Morales

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paolo F Rinaudo

    Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
    For correspondence
    rinaudop@obgyn.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6528-6009

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 R01HD092267)

  • Paolo F Rinaudo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul M Wassarman, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: Animal experiments were approved by the Institutional Animal Care and Use Committee (#AN181614-03) of the University of California, San Francisco,

Version history

  1. Received: April 1, 2022
  2. Preprint posted: April 14, 2022 (view preprint)
  3. Accepted: September 14, 2022
  4. Accepted Manuscript published: September 15, 2022 (version 1)
  5. Version of Record published: September 28, 2022 (version 2)

Copyright

© 2022, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,356
    views
  • 287
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seok Hee Lee
  2. Xiaowei Liu
  3. David Jimenez-Morales
  4. Paolo F Rinaudo
(2022)
Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production
eLife 11:e79153.
https://doi.org/10.7554/eLife.79153

Share this article

https://doi.org/10.7554/eLife.79153

Further reading

    1. Developmental Biology
    Thierry Gilbert, Camille Gorlt ... Andreas Merdes
    Research Article Updated

    Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.