Insulin sensitivity is preserved in mice made obese by feeding a high starch diet

Abstract

Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycemic/hyperinsulinemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlate with these differences.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; source data files have been provided for Figures 1,2,3,4,5, and 6.

Article and author information

Author details

  1. Amanda E Brandon

    School of Medical Sciences, University of Sydney, Sydney, Australia
    For correspondence
    amanda.brandon@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4996-7189
  2. Lewin Small

    Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9767-9464
  3. Tuong-Vi Nguyen

    Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Eurwin Suryana

    Diabetes and Metabolism Division, Garvan Institute of Medical Research, Syndey, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Henry Gong

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Yassmin

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah E Hancock

    Department of Pharmacology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Tamara Pulpitel

    School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Sophie Stonehouse

    School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Letisha Prescott

    School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Melkam A Kebede

    School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9686-7378
  12. Belinda Yau

    School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Lake-Ee Quek

    School of Mathematics and Statistics, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Greg M Kowalski

    Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Clinton R Bruce

    Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0515-3343
  16. Nigel Turner

    Department of Pharmacology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Gregory J Cooney

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Health and Medical Research Council (Fellowship 1003313)

  • Gregory J Cooney

National Health and Medical Research Council (Program grant 535921)

  • Gregory J Cooney

Diabetes Australia Research Trust (Grant)

  • Gregory J Cooney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan S Bogan, Yale School of Medicine, United States

Ethics

Animal experimentation: All experimental procedures performed were approved by the Garvan Institute/St Vincent's Hospital Animal Ethics Committee and were in accordance with the National Health and Medical Research Council of Australia's guidelines on animal experimentation (protocol number 14_07).

Version history

  1. Received: April 5, 2022
  2. Preprint posted: May 26, 2022 (view preprint)
  3. Accepted: November 16, 2022
  4. Accepted Manuscript published: November 17, 2022 (version 1)
  5. Version of Record published: November 30, 2022 (version 2)

Copyright

© 2022, Brandon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,842
    views
  • 322
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda E Brandon
  2. Lewin Small
  3. Tuong-Vi Nguyen
  4. Eurwin Suryana
  5. Henry Gong
  6. Christian Yassmin
  7. Sarah E Hancock
  8. Tamara Pulpitel
  9. Sophie Stonehouse
  10. Letisha Prescott
  11. Melkam A Kebede
  12. Belinda Yau
  13. Lake-Ee Quek
  14. Greg M Kowalski
  15. Clinton R Bruce
  16. Nigel Turner
  17. Gregory J Cooney
(2022)
Insulin sensitivity is preserved in mice made obese by feeding a high starch diet
eLife 11:e79250.
https://doi.org/10.7554/eLife.79250

Share this article

https://doi.org/10.7554/eLife.79250

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.