Regulatory T cells suppress the formation of potent KLRK1 and IL-7R expressing effector CD8 T cells by limiting IL-2

  1. Oksana Tsyklauri
  2. Tereza Chadimova
  3. Veronika Niederlova
  4. Jirina Kovarova
  5. Juraj Michalik
  6. Iva Malatova
  7. Sarka Janusova
  8. Olha Ivashchenko
  9. Helene Rossez
  10. Ales Drobek
  11. Hana Vecerova
  12. Virginie Galati
  13. Marek Kovar
  14. Ondrej Stepanek  Is a corresponding author
  1. Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic
  2. Institute of Microbiology of the Czech Academy of Sciences, Czech Republic
  3. University Hospital of Basel, Switzerland

Abstract

Regulatory T cells (Tregs) are indispensable for maintaining self-tolerance by suppressing conventional T cells. On the other hand, Tregs promote tumor growth by inhibiting anti-cancer immunity. In this study, we identified that Tregs increase the quorum of self-reactive CD8+ T cells required for the induction of experimental autoimmune diabetes in mice. Their major suppression mechanism is limiting available IL-2, an essential T-cell cytokine. Specifically, Tregs inhibit the formation of a previously uncharacterized subset of antigen-stimulated KLRK1+ IL7R+ (KILR) CD8+ effector T cells, which are distinct from conventional effector CD8+ T cells. KILR CD8+ T cells show a superior cell killing abilities in vivo. The administration of agonistic IL-2 immunocomplexes phenocopies the absence of Tregs, i.e., it induces KILR CD8+ T cells, promotes autoimmunity, and enhances anti-tumor responses in mice. Counterparts of KILR CD8+ T cells were found in the human blood, revealing them as a potential target for immunotherapy.

Data availability

All scRNA data analyzed in this study as well as the scripts used for the analysis are available without restrictions. The scRNAseq data generated in this study were deposited in the Gene Expression Omnibus (GSE183940).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Oksana Tsyklauri

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9997-5913
  2. Tereza Chadimova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Niederlova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Jirina Kovarova

    Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Juraj Michalik

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Iva Malatova

    Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarka Janusova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0111-497X
  8. Olha Ivashchenko

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Helene Rossez

    Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Ales Drobek

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  11. Hana Vecerova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  12. Virginie Galati

    Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Marek Kovar

    Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6602-1678
  14. Ondrej Stepanek

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    For correspondence
    ondrej.stepanek@img.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2735-3311

Funding

European Research Council (FunDiT)

  • Ondrej Stepanek

European Union - Next Generation EU (LX22NPO5103)

  • Ondrej Stepanek

European Union - Next Generation EU (LX22NPO5102)

  • Marek Kovar

Czech Science Foundation (19-03435Y)

  • Ondrej Stepanek

Czech Science Foundation (22-20548S)

  • Marek Kovar

Research Fund for Young Scientists at the University of Basel (DMS2336)

  • Ondrej Stepanek

Charles University Grant Agency (1706119)

  • Oksana Tsyklauri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal protocols were performed in accordance with the laws of the Czech Republic and Cantonal and Federal laws of Switzerland, and approved by the Czech Academy of Sciences (identification no. 11/2016, 81/2018, 15/2019) or the Cantonal Veterinary Office of Baselstadt, Switzerland, respectively.

Reviewing Editor

  1. Juan Carlos Zúñiga-Pflücker, University of Toronto, Sunnybrook Research Institute, Canada

Version history

  1. Preprint posted: November 12, 2021 (view preprint)
  2. Received: April 7, 2022
  3. Accepted: January 27, 2023
  4. Accepted Manuscript published: January 27, 2023 (version 1)
  5. Version of Record published: February 28, 2023 (version 2)

Copyright

© 2023, Tsyklauri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,227
    Page views
  • 229
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oksana Tsyklauri
  2. Tereza Chadimova
  3. Veronika Niederlova
  4. Jirina Kovarova
  5. Juraj Michalik
  6. Iva Malatova
  7. Sarka Janusova
  8. Olha Ivashchenko
  9. Helene Rossez
  10. Ales Drobek
  11. Hana Vecerova
  12. Virginie Galati
  13. Marek Kovar
  14. Ondrej Stepanek
(2023)
Regulatory T cells suppress the formation of potent KLRK1 and IL-7R expressing effector CD8 T cells by limiting IL-2
eLife 12:e79342.
https://doi.org/10.7554/eLife.79342

Share this article

https://doi.org/10.7554/eLife.79342

Further reading

    1. Immunology and Inflammation
    Tiantian Kou, Lan Kang ... Xiaoyu Hu
    Research Article

    Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.

    1. Cell Biology
    2. Immunology and Inflammation
    Chinky Shiu Chen Liu, Tithi Mandal ... Dipyaman Ganguly
    Research Article

    T cells are crucial for efficient antigen-specific immune responses and thus their migration within the body, to inflamed tissues from circulating blood or to secondary lymphoid organs, plays a very critical role. T cell extravasation in inflamed tissues depends on chemotactic cues and interaction between endothelial adhesion molecules and cellular integrins. A migrating T cell is expected to sense diverse external and membrane-intrinsic mechano-physical cues, but molecular mechanisms of such mechanosensing in cell migration are not established. We explored if the professional mechanosensor Piezo1 plays any role during integrin-dependent chemotaxis of human T cells. We found that deficiency of Piezo1 in human T cells interfered with integrin-dependent cellular motility on ICAM-1-coated surface. Piezo1 recruitment at the leading edge of moving T cells is dependent on and follows focal adhesion formation at the leading edge and local increase in membrane tension upon chemokine receptor activation. Piezo1 recruitment and activation, followed by calcium influx and calpain activation, in turn, are crucial for the integrin LFA1 (CD11a/CD18) recruitment at the leading edge of the chemotactic human T cells. Thus, we find that Piezo1 activation in response to local mechanical cues constitutes a membrane-intrinsic component of the ‘outside-in’ signaling in human T cells, migrating in response to chemokines, that mediates integrin recruitment to the leading edge.