Histone deacetylase 1 maintains lineage integrity through histone acetylome refinement during early embryogenesis

  1. Jeff Jiajing Zhou
  2. Jin Sun Cho
  3. Han Han
  4. Ira L Blitz
  5. Wenqi Wang
  6. Ken WY Cho  Is a corresponding author
  1. University of California, Irvine, United States

Abstract

Histone acetylation is a pivotal epigenetic modification that controls chromatin structure and regulates gene expression. It plays an essential role in modulating zygotic transcription and cell lineage specification of developing embryos. While the outcomes of many inductive signals have been described to require enzymatic activities of histone acetyltransferases and deacetylases (HDACs), the mechanisms by which HDACs confine the utilization of the zygotic genome remain to be elucidated. Here, we show that histone deacetylase 1 (Hdac1) progressively binds to the zygotic genome from mid blastula and onward. The recruitment of Hdac1 to the genome at blastula is instructed maternally. Cis-regulatory modules (CRMs) bound by Hdac1 possess epigenetic signatures underlying distinct functions. We highlight a dual function model of Hdac1 where Hdac1 not only represses gene expression by sustaining a histone hypoacetylation state on inactive chromatin, but also maintains gene expression through participating in dynamic histone acetylation-deacetylation cycles on active chromatin. As a result, Hdac1 maintains differential histone acetylation states of bound CRMs between different germ layers and reinforces the transcriptional program underlying cell lineage identities, both in time and space. Taken together, our study reveals a comprehensive role for Hdac1 during early vertebrate embryogenesis.

Data availability

Sequencing data have been deposited in GEO under accession code GSE198378.Publicly available datasets used in this study are available at NCBI Gene Expression Omnibus using the accession GSE56000, GSE67974 ,GSE65785, GSE85273, GSE81458, GSE129236. Relevant bioinformatic analysis scripts are accessible at https://github.com/jiajinglz/bioRxiv_05052022_Hdac_dual_roles.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jeff Jiajing Zhou

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jin Sun Cho

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Han Han

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ira L Blitz

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wenqi Wang

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4053-5088
  6. Ken WY Cho

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    For correspondence
    kwcho@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7282-1770

Funding

National Institute of General Medical Sciences (R01GM126395)

  • Ken WY Cho

National Institute of General Medical Sciences (R35GM139617)

  • Ken WY Cho

National Science Foundation (1755214)

  • Ken WY Cho

National Institute of General Medical Sciences (R01GM126048)

  • Wenqi Wang

American Cancer Society (RSG-18-009-01-CCG)

  • Wenqi Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew C. Good, University of Pennsylvania Perelman School of Medicine, United States

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AUP-21-068) of the University of California, Irvine.

Version history

  1. Received: April 9, 2022
  2. Preprint posted: May 6, 2022 (view preprint)
  3. Accepted: March 24, 2023
  4. Accepted Manuscript published: March 27, 2023 (version 1)
  5. Version of Record published: April 6, 2023 (version 2)

Copyright

© 2023, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 859
    views
  • 141
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeff Jiajing Zhou
  2. Jin Sun Cho
  3. Han Han
  4. Ira L Blitz
  5. Wenqi Wang
  6. Ken WY Cho
(2023)
Histone deacetylase 1 maintains lineage integrity through histone acetylome refinement during early embryogenesis
eLife 12:e79380.
https://doi.org/10.7554/eLife.79380

Share this article

https://doi.org/10.7554/eLife.79380

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.