Histone deacetylase 1 maintains lineage integrity through histone acetylome refinement during early embryogenesis

  1. Jeff Jiajing Zhou
  2. Jin Sun Cho
  3. Han Han
  4. Ira L Blitz
  5. Wenqi Wang
  6. Ken WY Cho  Is a corresponding author
  1. University of California, Irvine, United States

Abstract

Histone acetylation is a pivotal epigenetic modification that controls chromatin structure and regulates gene expression. It plays an essential role in modulating zygotic transcription and cell lineage specification of developing embryos. While the outcomes of many inductive signals have been described to require enzymatic activities of histone acetyltransferases and deacetylases (HDACs), the mechanisms by which HDACs confine the utilization of the zygotic genome remain to be elucidated. Here, we show that histone deacetylase 1 (Hdac1) progressively binds to the zygotic genome from mid blastula and onward. The recruitment of Hdac1 to the genome at blastula is instructed maternally. Cis-regulatory modules (CRMs) bound by Hdac1 possess epigenetic signatures underlying distinct functions. We highlight a dual function model of Hdac1 where Hdac1 not only represses gene expression by sustaining a histone hypoacetylation state on inactive chromatin, but also maintains gene expression through participating in dynamic histone acetylation-deacetylation cycles on active chromatin. As a result, Hdac1 maintains differential histone acetylation states of bound CRMs between different germ layers and reinforces the transcriptional program underlying cell lineage identities, both in time and space. Taken together, our study reveals a comprehensive role for Hdac1 during early vertebrate embryogenesis.

Data availability

Sequencing data have been deposited in GEO under accession code GSE198378.Publicly available datasets used in this study are available at NCBI Gene Expression Omnibus using the accession GSE56000, GSE67974 ,GSE65785, GSE85273, GSE81458, GSE129236. Relevant bioinformatic analysis scripts are accessible at https://github.com/jiajinglz/bioRxiv_05052022_Hdac_dual_roles.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jeff Jiajing Zhou

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jin Sun Cho

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Han Han

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ira L Blitz

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wenqi Wang

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4053-5088
  6. Ken WY Cho

    Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    For correspondence
    kwcho@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7282-1770

Funding

National Institute of General Medical Sciences (R01GM126395)

  • Ken WY Cho

National Institute of General Medical Sciences (R35GM139617)

  • Ken WY Cho

National Science Foundation (1755214)

  • Ken WY Cho

National Institute of General Medical Sciences (R01GM126048)

  • Wenqi Wang

American Cancer Society (RSG-18-009-01-CCG)

  • Wenqi Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew C. Good, University of Pennsylvania Perelman School of Medicine, United States

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AUP-21-068) of the University of California, Irvine.

Version history

  1. Received: April 9, 2022
  2. Preprint posted: May 6, 2022 (view preprint)
  3. Accepted: March 24, 2023
  4. Accepted Manuscript published: March 27, 2023 (version 1)
  5. Version of Record published: April 6, 2023 (version 2)

Copyright

© 2023, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 779
    views
  • 134
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeff Jiajing Zhou
  2. Jin Sun Cho
  3. Han Han
  4. Ira L Blitz
  5. Wenqi Wang
  6. Ken WY Cho
(2023)
Histone deacetylase 1 maintains lineage integrity through histone acetylome refinement during early embryogenesis
eLife 12:e79380.
https://doi.org/10.7554/eLife.79380

Share this article

https://doi.org/10.7554/eLife.79380

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.