Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3) supplementation

  1. Leonardo VM de Assis  Is a corresponding author
  2. Lisbeth Harder
  3. José Thalles Lacerda
  4. Rex Parsons
  5. Meike Kaehler
  6. Ingolf Cascorbi
  7. Inga Nagel
  8. Oliver Rawashdeh
  9. Jens Mittag
  10. Henrik Oster  Is a corresponding author
  1. University of Lübeck, Germany
  2. Karolinska Institute, Sweden
  3. University of Sao Paulo, Brazil
  4. Queensland University of Technology, Australia
  5. University Hospital Schleswig-Holstein, Germany
  6. University of Queensland, Australia

Abstract

Diurnal (i.e., 24-hour) physiological rhythms depend on transcriptional programs controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and neuronal signals, oscillations in body temperature, and food intake align physiological circadian rhythms with external time. Thyroid hormones (THs) are major regulators of circadian clock target processes such as energy metabolism, but little is known about how fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study, a high triiodothyronine (T3) state was induced in mice by supplementing T3 in the drinking water, which affected body temperature, and oxygen consumption in a time-of-day dependent manner. 24-hour transcriptome profiling of liver tissue identified 37 robustly and time independently T3 associated transcripts as potential TH state markers in the liver. Such genes participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10 - 15% of the liver transcriptome as rhythmic in control and T3 groups, but only 4% of the liver transcriptome (1,033 genes) were rhythmic across both conditions - amongst these several core clock genes. In-depth rhythm analyses showed that most changes in transcript rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene set enrichment analysis revealed TH state dependent reorganization of metabolic processes such as lipid and glucose metabolism. At high T3 levels, we observed weakening or loss of rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting increased hepatic energy turnover. In sum, we provide evidence that tonic changes in T3 levels restructure the diurnal liver metabolic transcriptome independent of local molecular circadian clocks.

Data availability

All experimental data was deposited in the Figshare depository (https://doi.org/10.6084/m9.figshare.20376444.v1). Microarray data was deposited in the Gene Expression Omnibus (GEO) database under access code GSE199998 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199998)

The following data sets were generated

Article and author information

Author details

  1. Leonardo VM de Assis

    Institute of Neurobiology, University of Lübeck, Lübeck, Germany
    For correspondence
    leonardo.deassis@uni-luebeck.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5209-0835
  2. Lisbeth Harder

    Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. José Thalles Lacerda

    Department of Physiology, University of Sao Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Rex Parsons

    Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Meike Kaehler

    Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ingolf Cascorbi

    Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Inga Nagel

    Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Oliver Rawashdeh

    Faculty of Medicine, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens Mittag

    Institute for Endocrinology and Diabetes - Molecular Endocrinology, University of Lübeck, Lübeck, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Henrik Oster

    Institute of Neurobiology, University of Lübeck, Lübeck, Germany
    For correspondence
    henrik.oster@uni-luebeck.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1414-7068

Funding

Deutsche Forschungsgemeinschaft (353-10/1; GRK-1957; CRC-296 LocoTact"")

  • Henrik Oster

Deutsche Forschungsgemeinschaft (CRC-296 LocoTact" (TP14).")

  • Jens Mittag

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, de Assis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,391
    views
  • 321
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leonardo VM de Assis
  2. Lisbeth Harder
  3. José Thalles Lacerda
  4. Rex Parsons
  5. Meike Kaehler
  6. Ingolf Cascorbi
  7. Inga Nagel
  8. Oliver Rawashdeh
  9. Jens Mittag
  10. Henrik Oster
(2022)
Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3) supplementation
eLife 11:e79405.
https://doi.org/10.7554/eLife.79405

Share this article

https://doi.org/10.7554/eLife.79405

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.

    1. Computational and Systems Biology
    2. Neuroscience
    Bernhard Englitz, Sahar Akram ... Shihab Shamma
    Research Article

    Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.