Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3) supplementation

  1. Leonardo VM de Assis  Is a corresponding author
  2. Lisbeth Harder
  3. José Thalles Lacerda
  4. Rex Parsons
  5. Meike Kaehler
  6. Ingolf Cascorbi
  7. Inga Nagel
  8. Oliver Rawashdeh
  9. Jens Mittag
  10. Henrik Oster  Is a corresponding author
  1. University of Lübeck, Germany
  2. Karolinska Institute, Sweden
  3. University of Sao Paulo, Brazil
  4. Queensland University of Technology, Australia
  5. University Hospital Schleswig-Holstein, Germany
  6. University of Queensland, Australia

Abstract

Diurnal (i.e., 24-hour) physiological rhythms depend on transcriptional programs controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and neuronal signals, oscillations in body temperature, and food intake align physiological circadian rhythms with external time. Thyroid hormones (THs) are major regulators of circadian clock target processes such as energy metabolism, but little is known about how fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study, a high triiodothyronine (T3) state was induced in mice by supplementing T3 in the drinking water, which affected body temperature, and oxygen consumption in a time-of-day dependent manner. 24-hour transcriptome profiling of liver tissue identified 37 robustly and time independently T3 associated transcripts as potential TH state markers in the liver. Such genes participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10 - 15% of the liver transcriptome as rhythmic in control and T3 groups, but only 4% of the liver transcriptome (1,033 genes) were rhythmic across both conditions - amongst these several core clock genes. In-depth rhythm analyses showed that most changes in transcript rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene set enrichment analysis revealed TH state dependent reorganization of metabolic processes such as lipid and glucose metabolism. At high T3 levels, we observed weakening or loss of rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting increased hepatic energy turnover. In sum, we provide evidence that tonic changes in T3 levels restructure the diurnal liver metabolic transcriptome independent of local molecular circadian clocks.

Data availability

All experimental data was deposited in the Figshare depository (https://doi.org/10.6084/m9.figshare.20376444.v1). Microarray data was deposited in the Gene Expression Omnibus (GEO) database under access code GSE199998 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199998)

The following data sets were generated

Article and author information

Author details

  1. Leonardo VM de Assis

    Institute of Neurobiology, University of Lübeck, Lübeck, Germany
    For correspondence
    leonardo.deassis@uni-luebeck.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5209-0835
  2. Lisbeth Harder

    Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. José Thalles Lacerda

    Department of Physiology, University of Sao Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Rex Parsons

    Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Meike Kaehler

    Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ingolf Cascorbi

    Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Inga Nagel

    Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Oliver Rawashdeh

    Faculty of Medicine, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens Mittag

    Institute for Endocrinology and Diabetes - Molecular Endocrinology, University of Lübeck, Lübeck, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Henrik Oster

    Institute of Neurobiology, University of Lübeck, Lübeck, Germany
    For correspondence
    henrik.oster@uni-luebeck.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1414-7068

Funding

Deutsche Forschungsgemeinschaft (353-10/1; GRK-1957; CRC-296 LocoTact"")

  • Henrik Oster

Deutsche Forschungsgemeinschaft (CRC-296 LocoTact" (TP14).")

  • Jens Mittag

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, de Assis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,540
    views
  • 331
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leonardo VM de Assis
  2. Lisbeth Harder
  3. José Thalles Lacerda
  4. Rex Parsons
  5. Meike Kaehler
  6. Ingolf Cascorbi
  7. Inga Nagel
  8. Oliver Rawashdeh
  9. Jens Mittag
  10. Henrik Oster
(2022)
Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3) supplementation
eLife 11:e79405.
https://doi.org/10.7554/eLife.79405

Share this article

https://doi.org/10.7554/eLife.79405

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.