The proportion of randomized controlled trials that inform clinical practice

  1. Nora Hutchinson
  2. Hannah Moyer
  3. Deborah A Zarin
  4. Jonathan Kimmelman  Is a corresponding author
  1. McGill University, Canada
  2. Brigham and Women's Hospital, United States

Abstract

Prior studies suggest that clinical trials are often hampered by problems in design, conduct and reporting that limit their uptake in clinical practice. We have described 'informativeness' as the ability of a trial to guide clinical, policy or research decisions. Little is known about the proportion of initiated trials that inform clinical practice. We created a cohort of randomized interventional clinical trials in three disease areas (ischemic heart disease, diabetes mellitus and lung cancer), that were initiated between 1 January 2009 and 31 December 2010 using ClinicalTrials.gov. We restricted inclusion to trials aimed at answering a clinical question related to the treatment or prevention of disease. Our primary outcome was the proportion of clinical trials fulfilling four conditions of informativeness: importance of the clinical question, trial design, feasibility, and reporting of results. Our study included 125 clinical trials. The proportion meeting four conditions for informativeness was 26.4% (95% CI 18.9 - 35.0). Sixty-seven percent of participants were enrolled in informative trials. The proportion of informative trials did not differ significantly between our three disease areas. Our results suggest that the majority of clinical trials designed to guide clinical practice possess features that may compromise their ability to do so. This highlights opportunities to improve the scientific vetting of clinical research.

Data availability

The data set is available online on Open Science Framework (DOI 10.17605/OSF.IO/3EGKU) (reference 18 in the manuscript).

Article and author information

Author details

  1. Nora Hutchinson

    Studies of Translation, Ethics and Medicine, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1349-8592
  2. Hannah Moyer

    Studies of Translation, Ethics and Medicine, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  3. Deborah A Zarin

    Multi-Regional Clinical Trials Center, Brigham and Women's Hospital, Boston, United States
    Competing interests
    Deborah A Zarin, received payment as consultant for National Library of Medicine, NIH, for scientific advice to ClinicalTrials.gov and received grants from the Greenwall Foundation..
  4. Jonathan Kimmelman

    Studies of Translation, Ethics and Medicine Research Group, Biomedical Ethics Unit, McGill University, Montreal, Canada
    For correspondence
    jonathan.kimmelman@mcgill.ca
    Competing interests
    Jonathan Kimmelman, received consulting fees from Amylyx Inc and payments from Biomarin. JK participated on Data Safety Monitoring Boards for NIAID and Ultragenyx.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1614-6779

Funding

Fonds de Recherche du Québec - Santé

  • Nora Hutchinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip Boonstra, University of Michigan, United States

Version history

  1. Received: April 14, 2022
  2. Preprint posted: May 13, 2022 (view preprint)
  3. Accepted: August 15, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Version of Record published: August 30, 2022 (version 2)

Copyright

© 2022, Hutchinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,581
    views
  • 320
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nora Hutchinson
  2. Hannah Moyer
  3. Deborah A Zarin
  4. Jonathan Kimmelman
(2022)
The proportion of randomized controlled trials that inform clinical practice
eLife 11:e79491.
https://doi.org/10.7554/eLife.79491

Share this article

https://doi.org/10.7554/eLife.79491

Further reading

    1. Medicine
    Ruijie Zeng, Yuying Ma ... Hao Chen
    Research Article

    Background:

    Adverse effects of proton pump inhibitors (PPIs) have raised wide concerns. The association of PPIs with influenza is unexplored, while that with pneumonia or COVID-19 remains controversial. Our study aims to evaluate whether PPI use increases the risks of these respiratory infections.

    Methods:

    The current study included 160,923 eligible participants at baseline who completed questionnaires on medication use, which included PPI or histamine-2 receptor antagonist (H2RA), from the UK Biobank. Cox proportional hazards regression and propensity score-matching analyses were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs).

    Results:

    Comparisons with H2RA users were tested. PPI use was associated with increased risks of developing influenza (HR 1.32, 95% CI 1.12–1.56) and pneumonia (hazard ratio [HR] 1.42, 95% confidence interval [CI] 1.26–1.59). In contrast, the risk of COVID-19 infection was not significant with regular PPI use (HR 1.08, 95% CI 0.99–1.17), while the risks of severe COVID-19 (HR 1.19. 95% CI 1.11–1.27) and mortality (HR 1.37. 95% CI 1.29–1.46) were increased. However, when compared with H2RA users, PPI users were associated with a higher risk of influenza (HR 1.74, 95% CI 1.19–2.54), but the risks with pneumonia or COVID-19-related outcomes were not evident.

    Conclusions:

    PPI users are associated with increased risks of influenza, pneumonia, as well as COVID-19 severity and mortality compared to non-users, while the effects on pneumonia or COVID-19-related outcomes under PPI use were attenuated when compared to the use of H2RAs. Appropriate use of PPIs based on comprehensive evaluation is required.

    Funding:

    This work is supported by the National Natural Science Foundation of China (82171698, 82170561, 81300279, 81741067, 82100238), the Program for High-level Foreign Expert Introduction of China (G2022030047L), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (2021B1515020003), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012081), the Foreign Distinguished Teacher Program of Guangdong Science and Technology Department (KD0120220129), the Climbing Program of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (DFJH201923, DFJH201803, KJ012019099, KJ012021143, KY012021183), and in part by VA Clinical Merit and ASGE clinical research funds (FWL).

    1. Medicine
    Vitaly Ryu, Anisa Azatovna Gumerova ... Mone Zaidi
    Tools and Resources Updated

    There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow–these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.