Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making

Abstract

Memory-guided decision making involves long-range coordination across sensory and cognitive brain networks, with key roles for the hippocampus and prefrontal cortex (PFC). In order to investigate the mechanisms of such coordination, we monitored activity in hippocampus (CA1), PFC, and olfactory bulb (OB) in rats performing an odor-place associative memory guided decision task on a T-maze. During odor sampling, the beta (20-30 Hz) and respiratory (7-8 Hz) rhythms (RR) were prominent across the three regions, with beta and RR coherence between all pairs of regions enhanced during the odor-cued decision making period. Beta phase modulation of phase-locked CA1 and PFC neurons during this period was linked to accurate decisions, with a key role of CA1 interneurons in temporal coordination. Single neurons and ensembles in both CA1 and PFC encoded and predicted animals' upcoming choices, with different cell ensembles engaged during decision-making and decision execution on the maze. Our findings indicate that rhythmic coordination within the hippocampal-prefrontal-olfactory bulb network supports utilization of odor cues for memory-guided decision making.

Data availability

Data is available for download on figshare:Data DOI: https://doi.org/10.6084/m9.figshare.19620783.v1

The following data sets were generated

Article and author information

Author details

  1. Claire A Symanski

    Neuroscience Program, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John H Bladon

    Department of Psychology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emi T Kullberg

    Neuroscience Program, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul Miller

    Neuroscience Program, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shantanu P Jadhav

    Neuroscience Program, Brandeis University, Waltham, United States
    For correspondence
    shantanu@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5821-0551

Funding

National Institute of Mental Health (R01MH120228)

  • Shantanu P Jadhav

National Institute of Mental Health (R01MH112661)

  • Shantanu P Jadhav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Ethics

Animal experimentation: All experimental procedures were approved by the Brandeis University InstitutionalAnimal Care and Usage Committee (IACUC) and conformed to US National Institutes of Health. Procedures were approved under IACUC Protocol # 21001

Version history

  1. Preprint posted: June 9, 2020 (view preprint)
  2. Received: April 17, 2022
  3. Accepted: December 8, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Version of Record published: December 29, 2022 (version 2)

Copyright

© 2022, Symanski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,675
    views
  • 289
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claire A Symanski
  2. John H Bladon
  3. Emi T Kullberg
  4. Paul Miller
  5. Shantanu P Jadhav
(2022)
Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making
eLife 11:e79545.
https://doi.org/10.7554/eLife.79545

Share this article

https://doi.org/10.7554/eLife.79545

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.