Wide-ranging consequences of priority effects governed by an overarching factor
Abstract
Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus) aurantiacus, exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris, the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii, the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris-induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization.
Data availability
Raw sequencing reads are available at NCBI Sequence Read Archive (BioProject PRJNA825574). All other data and code reported in this paper are available at: https://gitlab.com/teamnectarmicrobe/n06_nectarmicrobes_ecoevo
-
Metschnikowia reukaufii strain:MR1 Raw sequence readsNCBI BioProject PRJNA825574.
Article and author information
Author details
Funding
National Science Foundation (DEB 1149600)
- Tadashi Fukami
National Science Foundation (DEB 1737758)
- Tadashi Fukami
National Science Foundation (DGE 1656518)
- Callie Rodgers Chappell
Marsden Fund (MFP-LCR-2002)
- Manpreet K Dhami
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Chappell et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,142
- views
-
- 302
- downloads
-
- 38
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.