a1 adrenergic receptor - PKC - Pyk2 - Src signaling boosts L-type Ca2+ channel Cav1.2 activity and long-term potentiation in rodents

Abstract

The cellular mechanisms mediating norepinephrine functions in brain to result in behaviors are unknown. We identified the L-type Ca2+ channel (LTCC) CaV1.2 as a principal target for Gq-coupled a1-adrenergic receptors (ARs). a1AR signaling increased LTCC activity in hippocampal neurons. This regulation required PKC-mediated activation of the tyrosine kinases Pyk2 and, downstream, Src. Pyk2 and Src were associated with CaV1.2. In model neuroendocrine PC12 cells, stimulation of PKC induced tyrosine phosphorylation of CaV1.2, a modification abrogated by inhibition of Pyk2 and Src. Upregulation of LTCC activity by a1AR and formation of a signaling complex with PKC, Pyk2, and Src suggests that CaV1.2 is a central conduit for signaling by norepinephrine. Indeed, a form of hippocampal LTP in young mice requires both the LTCC and a1AR stimulation. Inhibition of Pyk2 and Src blocked this LTP, indicating that enhancement of CaV1.2 activity via a1AR - Pyk2 - Src signaling regulates synaptic strength.

Data availability

Raw datasets are available on Dryad (https://doi.org/10.25338/B86G9K).

The following data sets were generated

Article and author information

Author details

  1. Kwun Nok Mimi Man

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-9129
  2. Peter Bartels

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5852-1835
  3. Peter B Henderson

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karam Kim

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mei Shi

    Department of Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mingxu Zhang

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sheng-Yang Ho

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Madeline Nieves-Cintron

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1935-8400
  9. Manuel F Navedo

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6864-6594
  10. Mary C Horne

    Department of Pharmacology, University of California, Davis, Davis, United States
    For correspondence
    mhorne@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Johannes W Hell

    Department of Pharmacology, University of California, Davis, Davis, United States
    For correspondence
    jwhell@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7960-7531

Funding

National Institutes of Health (R01 MH097887)

  • Johannes W Hell

National Institutes of Health (RF1 AG055357)

  • Johannes W Hell

National Institutes of Health (R01 HL098200)

  • Manuel F Navedo

National Institutes of Health (R01 HL121059)

  • Manuel F Navedo

National Institutes of Health (T32 GM099608)

  • Peter B Henderson

National Institutes of Health (R01 NS123050)

  • Madeline Nieves-Cintron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures followed NIH guidelines and had been approved by the Institutional Animal Care and Use Committees (IACUC) at UC Davis (Protocol #20673 and #22403).

Reviewing Editor

  1. Yukiko Goda, Okinawa Institute of Science and Technology, Japan

Version history

  1. Received: April 21, 2022
  2. Preprint posted: July 3, 2022 (view preprint)
  3. Accepted: June 19, 2023
  4. Accepted Manuscript published: June 20, 2023 (version 1)
  5. Version of Record published: July 6, 2023 (version 2)

Copyright

© 2023, Man et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 633
    Page views
  • 81
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kwun Nok Mimi Man
  2. Peter Bartels
  3. Peter B Henderson
  4. Karam Kim
  5. Mei Shi
  6. Mingxu Zhang
  7. Sheng-Yang Ho
  8. Madeline Nieves-Cintron
  9. Manuel F Navedo
  10. Mary C Horne
  11. Johannes W Hell
(2023)
a1 adrenergic receptor - PKC - Pyk2 - Src signaling boosts L-type Ca2+ channel Cav1.2 activity and long-term potentiation in rodents
eLife 12:e79648.
https://doi.org/10.7554/eLife.79648

Further reading

    1. Neuroscience
    Connon I Thomas, Melissa A Ryan ... Benjamin Scholl
    Research Article

    Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.