Inhibition of mutant RAS-RAF interaction by mimicking structural and dynamic properties of phosphorylated RAS

  1. Metehan Ilter
  2. Ramazan Kaşmer
  3. Farzaneh Jalalypour
  4. Canan Atilgan
  5. Ozan Topcu
  6. Nihal Karakaş  Is a corresponding author
  7. Ozge Sensoy  Is a corresponding author
  1. Istanbul Medipol University, Turkey
  2. Sabanci University, Turkey

Abstract

Undruggability of RAS proteins has necessitated alternative strategies for the development of effective inhibitors. In this respect, phosphorylation has recently come into prominence as this reversible post-translational modification attenuates sensitivity of RAS towards RAF. As such, in this study, we set out to unveil the impact of phosphorylation on dynamics of HRASWT and aim to invoke similar behavior in HRASG12D mutant by means of small therapeutic molecules. To this end, we performed molecular dynamics (MD) simulations using phosphorylated HRAS and showed that phosphorylation of Y32 distorted Switch I, hence the RAS/RAF interface. Consequently, we targeted Switch I in HRASG12D by means of approved therapeutic molecules and showed that the ligands enabled detachment of Switch I from the nucleotide-binding pocket. Moreover, we demonstrated that displacement of Switch I from the nucleotide-binding pocket was energetically more favorable in the presence of the ligand. Importantly, we verified computational findings in vitro where HRASG12D/RAF interaction was prevented by the ligand in HEK293T cells that expressed HRASG12D mutant protein. Therefore, these findings suggest that targeting Switch I, hence making Y32 accessible might open up new avenues in future drug discovery strategies that target mutant RAS proteins.

Data availability

Simulated data used to generate the figures in the commentary are available online (https://osf.io/z2y5s/?view_only=070ebb995ba945bb9aac40d5979bd508).

Article and author information

Author details

  1. Metehan Ilter

    1Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  2. Ramazan Kaşmer

    Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  3. Farzaneh Jalalypour

    Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  4. Canan Atilgan

    Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0557-6044
  5. Ozan Topcu

    Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  6. Nihal Karakaş

    Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
    For correspondence
    nkarakas@medipol.edu.tr
    Competing interests
    The authors declare that no competing interests exist.
  7. Ozge Sensoy

    Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
    For correspondence
    osensoy@medipol.edu.tr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5950-3436

Funding

Health Institute of Turkey (3561/2019-TA-02)

  • Metehan Ilter
  • Ozan Topcu
  • Ozge Sensoy

The Scientific and Technological Research Council of Turkey (116F229)

  • Farzaneh Jalalypour
  • Canan Atilgan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Ilter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,490
    views
  • 264
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Metehan Ilter
  2. Ramazan Kaşmer
  3. Farzaneh Jalalypour
  4. Canan Atilgan
  5. Ozan Topcu
  6. Nihal Karakaş
  7. Ozge Sensoy
(2022)
Inhibition of mutant RAS-RAF interaction by mimicking structural and dynamic properties of phosphorylated RAS
eLife 11:e79747.
https://doi.org/10.7554/eLife.79747

Share this article

https://doi.org/10.7554/eLife.79747

Further reading

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.

    1. Structural Biology and Molecular Biophysics
    Yao Chi Chen, Karen Sargsyan ... Carmay Lim
    Research Article

    Experimental detection of residues critical for protein–protein interactions (PPI) is a time-consuming, costly, and labor-intensive process. Hence, high-throughput PPI-hot spot prediction methods have been developed, but they have been validated using relatively small datasets, which may compromise their predictive reliability. Here, we introduce PPI-hotspotID, a novel method for identifying PPI-hot spots using the free protein structure, and validated it on the largest collection of experimentally confirmed PPI-hot spots to date. We explored the possibility of detecting PPI-hot spots using (i) FTMap in the PPI mode, which identifies hot spots on protein–protein interfaces from the free protein structure, and (ii) the interface residues predicted by AlphaFold-Multimer. PPI-hotspotID yielded better performance than FTMap and SPOTONE, a webserver for predicting PPI-hot spots given the protein sequence. When combined with the AlphaFold-Multimer-predicted interface residues, PPI-hotspotID yielded better performance than either method alone. Furthermore, we experimentally verified several PPI-hotspotID-predicted PPI-hot spots of eukaryotic elongation factor 2. Notably, PPI-hotspotID can reveal PPI-hot spots not obvious from complex structures, including those in indirect contact with binding partners. PPI-hotspotID serves as a valuable tool for understanding PPI mechanisms and aiding drug design. It is available as a web server (https://ppihotspotid.limlab.dnsalias.org/) and open-source code (https://github.com/wrigjz/ppihotspotid/).