Contrast-polarity specific mapping improves efficiency of neuronal computation for collision detection

  1. Richard Burkett Dewell  Is a corresponding author
  2. Ying Zhu
  3. Margaret Eisenbrandt
  4. Richard Morse
  5. Fabrizio Gabbiani
  1. Baylor College of Medicine, United States
  2. Houston Methodist Research Institute, United States
  3. Rice University, United States

Abstract

Neurons receive information through their synaptic inputs, but the functional significance of how those inputs are mapped on to a cell's dendrites remains unclear. We studied this question in a grasshopper visual neuron that tracks approaching objects and triggers escape behavior before an impending collision. In response to black approaching objects, the neuron receives OFF excitatory inputs that form a retinotopic map of the visual field onto compartmentalized, distal dendrites. Subsequent processing of these OFF inputs by active membrane conductances allows the neuron to discriminate the spatial coherence of such stimuli. In contrast, we show that ON excitatory synaptic inputs activated by white approaching objects map in a random manner onto a more proximal dendritic field of the same neuron. The lack of retinotopic synaptic arrangement results in the neuron’s inability to discriminate the coherence of white approaching stimuli. Yet, the neuron retains the ability to discriminate stimulus coherence for checkered stimuli of mixed ON/OFF polarity. The coarser mapping and processing of ON stimuli thus has a minimal impact, while reducing the total energetic cost of the circuit. Further, we show that these differences in ON/OFF neuronal processing are behaviorally relevant, being tightly correlated with the animal’s escape behavior to light and dark stimuli of variable coherence. Our results show that the synaptic mapping of excitatory inputs affects the fine stimulus discrimination ability of single neurons and document the resulting functional impact on behavior.

Data availability

The data and code used to generate the final figures is available from Dryad (DOI: 10.5061/dryad.prr4xgxqp). The modeling code is available from ModelDB (Accession number: 267594).

The following data sets were generated

Article and author information

Author details

  1. Richard Burkett Dewell

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    For correspondence
    dewell@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2430-8184
  2. Ying Zhu

    Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Margaret Eisenbrandt

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-1922
  4. Richard Morse

    Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrizio Gabbiani

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4966-3027

Funding

National Science Foundation (DMS-1120952)

  • Fabrizio Gabbiani

National Science Foundation (DBI-2021795)

  • Fabrizio Gabbiani

National Eye Institute (EY-002520-37)

  • Fabrizio Gabbiani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Dewell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 574
    views
  • 70
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard Burkett Dewell
  2. Ying Zhu
  3. Margaret Eisenbrandt
  4. Richard Morse
  5. Fabrizio Gabbiani
(2022)
Contrast-polarity specific mapping improves efficiency of neuronal computation for collision detection
eLife 11:e79772.
https://doi.org/10.7554/eLife.79772

Share this article

https://doi.org/10.7554/eLife.79772

Further reading

    1. Neuroscience
    Cristina Gil Avila, Elisabeth S May ... Markus Ploner
    Research Article

    Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.

    1. Neuroscience
    Ankur Sinha, Padraig Gleeson ... Robin Angus Silver
    Tools and Resources

    Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows. NeuroML, a model description language for computational neuroscience, was developed to address this fragmentation in modeling tools. Since its inception, NeuroML has evolved into a mature community standard that encompasses a wide range of model types and approaches in computational neuroscience. It has enabled the development of a large ecosystem of interoperable open-source software tools for the creation, visualization, validation, and simulation of data-driven models. Here, we describe how the NeuroML ecosystem can be incorporated into research workflows to simplify the construction, testing, and analysis of standardized models of neural systems, and supports the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, thus promoting open, transparent and reproducible science.