Contrast-polarity specific mapping improves efficiency of neuronal computation for collision detection

  1. Richard Burkett Dewell  Is a corresponding author
  2. Ying Zhu
  3. Margaret Eisenbrandt
  4. Richard Morse
  5. Fabrizio Gabbiani
  1. Baylor College of Medicine, United States
  2. Houston Methodist Research Institute, United States
  3. Rice University, United States

Abstract

Neurons receive information through their synaptic inputs, but the functional significance of how those inputs are mapped on to a cell's dendrites remains unclear. We studied this question in a grasshopper visual neuron that tracks approaching objects and triggers escape behavior before an impending collision. In response to black approaching objects, the neuron receives OFF excitatory inputs that form a retinotopic map of the visual field onto compartmentalized, distal dendrites. Subsequent processing of these OFF inputs by active membrane conductances allows the neuron to discriminate the spatial coherence of such stimuli. In contrast, we show that ON excitatory synaptic inputs activated by white approaching objects map in a random manner onto a more proximal dendritic field of the same neuron. The lack of retinotopic synaptic arrangement results in the neuron’s inability to discriminate the coherence of white approaching stimuli. Yet, the neuron retains the ability to discriminate stimulus coherence for checkered stimuli of mixed ON/OFF polarity. The coarser mapping and processing of ON stimuli thus has a minimal impact, while reducing the total energetic cost of the circuit. Further, we show that these differences in ON/OFF neuronal processing are behaviorally relevant, being tightly correlated with the animal’s escape behavior to light and dark stimuli of variable coherence. Our results show that the synaptic mapping of excitatory inputs affects the fine stimulus discrimination ability of single neurons and document the resulting functional impact on behavior.

Data availability

The data and code used to generate the final figures is available from Dryad (DOI: 10.5061/dryad.prr4xgxqp). The modeling code is available from ModelDB (Accession number: 267594).

The following data sets were generated

Article and author information

Author details

  1. Richard Burkett Dewell

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    For correspondence
    dewell@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2430-8184
  2. Ying Zhu

    Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Margaret Eisenbrandt

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-1922
  4. Richard Morse

    Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrizio Gabbiani

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4966-3027

Funding

National Science Foundation (DMS-1120952)

  • Fabrizio Gabbiani

National Science Foundation (DBI-2021795)

  • Fabrizio Gabbiani

National Eye Institute (EY-002520-37)

  • Fabrizio Gabbiani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Damon A Clark, Yale University, United States

Version history

  1. Received: April 26, 2022
  2. Preprint posted: May 10, 2022 (view preprint)
  3. Accepted: October 27, 2022
  4. Accepted Manuscript published: October 31, 2022 (version 1)
  5. Version of Record published: November 18, 2022 (version 2)
  6. Version of Record updated: February 16, 2023 (version 3)

Copyright

© 2022, Dewell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 527
    views
  • 64
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard Burkett Dewell
  2. Ying Zhu
  3. Margaret Eisenbrandt
  4. Richard Morse
  5. Fabrizio Gabbiani
(2022)
Contrast-polarity specific mapping improves efficiency of neuronal computation for collision detection
eLife 11:e79772.
https://doi.org/10.7554/eLife.79772

Share this article

https://doi.org/10.7554/eLife.79772

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.