Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through Cyclooxygenase 2

  1. Weiping Su
  2. Guanqiao Liu
  3. Bahram Mohajer
  4. Jiekang Wang
  5. Alena Shen
  6. Weixin Zhang
  7. Bin Liu
  8. Ali Guermazi
  9. Peisong Gao
  10. Xu Cao
  11. Shadpour Demehri  Is a corresponding author
  12. Mei Wan  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Southern California, United States
  3. Boston University School of Medicine, United States

Abstract

Background: Metabolic syndrome–associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA.

Methods: Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system.

Results: Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal anti-inflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA.

Conclusions: Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential.

Funding: This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to M.W., R01AR079620 to S.D., and P01AG066603 to X.C.

Data availability

The data that support the findings of this study are available within the article and Supplementary file. Sequencing data have been deposited in Dryad and can be acquired through online portal at https://doi.org/10.5061/dryad.q2bvq83n6. The naming and version of OAI dataset files used in our study are listed in Supplementary file 1C and can be acquired through OAI online portal at https://nda.nih.gov/oai.

The following data sets were generated

Article and author information

Author details

  1. Weiping Su

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Guanqiao Liu

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Bahram Mohajer

    Musculoskeletal Radiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Jiekang Wang

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Alena Shen

    Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Weixin Zhang

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Bin Liu

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Ali Guermazi

    Department of Radiology, Boston University School of Medicine, Boston, United States
    Competing interests
    Ali Guermazi, received consultancy fees from Pfizer, Novartis, MerckSerono, TissueGene, AstraZeneca, and Regeneron. The author has no other competing interests to declare..
  9. Peisong Gao

    Johns Hopkins Asthma & Allergy Center, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  10. Xu Cao

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8614-6059
  11. Shadpour Demehri

    Musculoskeletal Radiology, Johns Hopkins University, Baltimore, United States
    For correspondence
    sdemehr1@jh.edu
    Competing interests
    No competing interests declared.
  12. Mei Wan

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    For correspondence
    mwan4@jhmi.edu
    Competing interests
    Mei Wan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-540X

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: We used data from the longitudinal multi-center OAI study (2004-2015 clinicaltrials.gov identifier: NCT00080171). All 4,796 enrolled patients gave written informed consent. Institutional review boards of four OAI collaborating centers have approved the OAI study's Health Insurance Portability and Accountability Act-compliant protocol (approval number: FWA00000068).

Copyright

© 2022, Su et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,217
    views
  • 400
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weiping Su
  2. Guanqiao Liu
  3. Bahram Mohajer
  4. Jiekang Wang
  5. Alena Shen
  6. Weixin Zhang
  7. Bin Liu
  8. Ali Guermazi
  9. Peisong Gao
  10. Xu Cao
  11. Shadpour Demehri
  12. Mei Wan
(2022)
Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through Cyclooxygenase 2
eLife 11:e79773.
https://doi.org/10.7554/eLife.79773

Share this article

https://doi.org/10.7554/eLife.79773

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.