Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through Cyclooxygenase 2

  1. Weiping Su
  2. Guanqiao Liu
  3. Bahram Mohajer
  4. Jiekang Wang
  5. Alena Shen
  6. Weixin Zhang
  7. Bin Liu
  8. Ali Guermazi
  9. Peisong Gao
  10. Xu Cao
  11. Shadpour Demehri  Is a corresponding author
  12. Mei Wan  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Southern California, United States
  3. Boston University School of Medicine, United States

Abstract

Background: Metabolic syndrome–associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA.

Methods: Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system.

Results: Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal anti-inflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA.

Conclusions: Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential.

Funding: This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to M.W., R01AR079620 to S.D., and P01AG066603 to X.C.

Data availability

The data that support the findings of this study are available within the article and Supplementary file. Sequencing data have been deposited in Dryad and can be acquired through online portal at https://doi.org/10.5061/dryad.q2bvq83n6. The naming and version of OAI dataset files used in our study are listed in Supplementary file 1C and can be acquired through OAI online portal at https://nda.nih.gov/oai.

The following data sets were generated

Article and author information

Author details

  1. Weiping Su

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Guanqiao Liu

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Bahram Mohajer

    Musculoskeletal Radiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Jiekang Wang

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Alena Shen

    Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Weixin Zhang

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Bin Liu

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Ali Guermazi

    Department of Radiology, Boston University School of Medicine, Boston, United States
    Competing interests
    Ali Guermazi, received consultancy fees from Pfizer, Novartis, MerckSerono, TissueGene, AstraZeneca, and Regeneron. The author has no other competing interests to declare..
  9. Peisong Gao

    Johns Hopkins Asthma & Allergy Center, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  10. Xu Cao

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8614-6059
  11. Shadpour Demehri

    Musculoskeletal Radiology, Johns Hopkins University, Baltimore, United States
    For correspondence
    sdemehr1@jh.edu
    Competing interests
    No competing interests declared.
  12. Mei Wan

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    For correspondence
    mwan4@jhmi.edu
    Competing interests
    Mei Wan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-540X

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: We used data from the longitudinal multi-center OAI study (2004-2015 clinicaltrials.gov identifier: NCT00080171). All 4,796 enrolled patients gave written informed consent. Institutional review boards of four OAI collaborating centers have approved the OAI study's Health Insurance Portability and Accountability Act-compliant protocol (approval number: FWA00000068).

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: April 27, 2022
  2. Preprint posted: May 5, 2022 (view preprint)
  3. Accepted: May 6, 2022
  4. Accepted Manuscript published: July 26, 2022 (version 1)
  5. Version of Record published: August 10, 2022 (version 2)

Copyright

© 2022, Su et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 394
    Page views
  • 233
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weiping Su
  2. Guanqiao Liu
  3. Bahram Mohajer
  4. Jiekang Wang
  5. Alena Shen
  6. Weixin Zhang
  7. Bin Liu
  8. Ali Guermazi
  9. Peisong Gao
  10. Xu Cao
  11. Shadpour Demehri
  12. Mei Wan
(2022)
Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through Cyclooxygenase 2
eLife 11:e79773.
https://doi.org/10.7554/eLife.79773

Further reading

    1. Cell Biology
    2. Medicine
    Susheel N Chaurasia, Mohammad Ekhlak ... Debabrata Dash
    Research Article

    Background: Notch signaling dictates cell fate decisions in mammalian cells including megakaryocytes. Existence of functional Notch signaling in enucleate platelets remains elusive.

    Methods: Transcripts/peptides of Notch1 and Delta-like ligand (DLL)-4 were detected in platelets isolated from human blood by RT-qPCR, Western analysis and flow cytometry. Platelet aggregation, granule secretion and platelet-leucocyte interaction were analyzed by lumi-aggregometry and flow cytometry. Platelet-derived extracellular vesicles were documented with Nanoparticle Tracking Analyzer. Platelet thrombus on immobilized collagen was quantified using microfluidics platform. Intracellular calcium was monitored by fluorescence spectrophotometry. Whole blood coagulation was studied by thromboelastography. Ferric chloride-induced mouse mesenteric arteriolar thrombosis was imaged by intravital microscopy.

    Results: We demonstrate expression of Notch1, its ligand DLL-4 and their respective transcripts in human platelets. Synthesis and surface translocation of Notch1 and DLL-4 were upregulated by thrombin. DLL-4, in turn, instigated neighbouring platelets to switch to 'activated' phenotype through cleavage of Notch receptor and release of its intracellular domain (NICD), which was averted by inhibition of γ-secretase and phosphatidylinositol-3-kinase (PI3K). Inhibition of Notch signaling, too, restrained agonist-induced platelet activation, and significantly impaired arterial thrombosis in mice. Strikingly, prevention of DLL-4-Notch1 interaction by a blocking antibody abolished platelet aggregation and extracellular vesicle shedding induced by thrombin.

    Conclusions: Our study presents compelling evidence in support of non-canonical juxtacrine Notch signaling within platelet aggregates that synergizes with physiological agonists to generate occlusive intramural thrombi. Thus, Notch pathway can be a potential anti-platelet/anti-thrombotic therapeutic target.

    Funding: Research was supported by grants received by DD from JC Bose Fellowship (JCB/2017/000029), ICMR (71/4/2018-BMS/CAR), DBT (BT/PR-20645/BRB/10/1541/2016) and SERB (EMR/2015/000583). SNC, ME and VS are recipients of ICMR-Scientist-C, CSIR-SRF and UGC-SRF support, respectively. Funders had no role in design, analysis and reporting of study.

    1. Medicine
    Maxime RF Gosselin, Virginie Mournetas ... Dariusz C Gorecki
    Research Article

    Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts—the effector cells of muscle growth and regeneration—are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.