Taste quality and hunger interactions in a feeding sensorimotor circuit

  1. Philip K Shiu
  2. Gabriella R Sterne  Is a corresponding author
  3. Stefanie Engert
  4. Barry J Dickson
  5. Kristin Scott  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Queensland, Australia

Abstract

Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in adult Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Pathway activity is amplified by hunger signals that act at select second-order neurons to promote feeding initiation in food-deprived animals. In contrast, the feeding initiation circuit is inhibited by a bitter taste pathway that impinges on premotor neurons, illuminating a local motif that weighs sugar and bitter taste detection to adjust behavioral outcome. Together, these studies reveal central mechanisms for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.

Data availability

All data is included in the manuscript or available at https://catmaid-fafb.virtualflybrain.org.

Article and author information

Author details

  1. Philip K Shiu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriella R Sterne

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    sternegr@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7221-648X
  3. Stefanie Engert

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0644-8116
  4. Barry J Dickson

    Queensland Brain Institute, University of Queensland, Queensland, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Kristin Scott

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    kscott@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3150-7210

Funding

National Institutes of Health (R01DC013280)

  • Kristin Scott

National Institutes of Health (F32DK117671)

  • Gabriella R Sterne

National Institutes of Health (F32DC018225)

  • Philip K Shiu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Shiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,722
    views
  • 690
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philip K Shiu
  2. Gabriella R Sterne
  3. Stefanie Engert
  4. Barry J Dickson
  5. Kristin Scott
(2022)
Taste quality and hunger interactions in a feeding sensorimotor circuit
eLife 11:e79887.
https://doi.org/10.7554/eLife.79887

Share this article

https://doi.org/10.7554/eLife.79887

Further reading

    1. Neuroscience
    Sofie Louise Valk, Veronika Engert ... Tania Singer
    Research Article

    The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.

    1. Neuroscience
    David L Haggerty, Brady K Atwood
    Research Advance

    How does alcohol consumption alter synaptic transmission across time, and do these alcohol-induced neuroadaptations occur similarly in both male and female mice? Previously we identified that anterior insular cortex (AIC) projections to the dorsolateral striatum (DLS) are uniquely sensitive to alcohol-induced neuroadaptations in male, but not female mice, and play a role in governing binge alcohol consumption in male mice (Haggerty et al., 2022). Here, by using high-resolution behavior data paired with in-vivo fiber photometry, we show how similar levels of alcohol intake are achieved via different behavioral strategies across sexes, and how inter-drinking session thirst states predict future alcohol intakes in females, but not males. Furthermore, we show how presynaptic calcium activity recorded from AIC synaptic inputs in the DLS across 3 weeks of water consumption followed by 3 weeks of binge alcohol consumption changes across, fluid, time, sex, and brain circuit lateralization. By time-locking presynaptic calcium activity from AIC inputs to the DLS to peri-initiation of drinking events we also show that AIC inputs into the left DLS robustly encode binge alcohol intake behaviors relative to water consumption. These findings suggest a fluid-, sex-, and lateralization-dependent role for the engagement of AIC inputs into the DLS that encode binge alcohol consumption behaviors and further contextualize alcohol-induced neuroadaptations at AIC inputs to the DLS.