How enzymatic activity is involved in chromatin organization

  1. Rakesh Das  Is a corresponding author
  2. Takahiro Sakaue
  3. G V Shivashankar
  4. Jacques Prost
  5. Tetsuya Hiraiwa  Is a corresponding author
  1. National University of Singapore, Singapore
  2. Aoyama Gakuin University, Japan
  3. ETH Zurich, Switzerland
  4. Institute Curie, France

Abstract

Spatial organization of chromatin plays a critical role in genome regulation. Previously, various types of affnity mediators and enzymes have been attributed to regulate spatial organization of chromatin from a thermodynamics perspective. However, at the mechanistic level, enzymes act in their unique ways and perturb the chromatin. Here, we construct a polymer physics model following the mechanistic scheme of Topoisomerase-II, an enzyme resolving topological constraints of chromatin, and investigate how it affects interphase chromatin organization. Our computer simulations demonstrate Topoisomerase-II's ability to phase separate chromatin into eu- and heterochromatic regions with a characteristic wall-like organization of the euchromatic regions. We realized that the ability of the euchromatic regions to cross each other due to enzymatic activity of Topoisomerase-II induces this phase separation. This realization is based on the physical fact that partial absence of self-avoiding interaction can induce phase separation of a system into its self-avoiding and non-self-avoiding parts, which we reveal using a mean-field argument. Furthermore, motivated from recent experimental observations, we extend our model to a bidisperse setting and show that the characteristic features of the enzymatic activity driven phase separation survive there. The existence of these robust characteristic features, even under the non-localized action of the enzyme, highlights the critical role of enzymatic activity in chromatin organization.

Data availability

All data generated or analysed are included in the manuscript. Two source codes used to simulate all the variants of models presented here are shared as supplemental files -Source code 1: CPU-based FORTRAN simulation code using OpenMP API. Instructions to use this can be found in the README text accompanying the source code.Source code 2: CUDA FORTRAN simulation code using GPU acceleration. Instructions to use this can be found in the README text accompanying the source code.

Article and author information

Author details

  1. Rakesh Das

    National University of Singapore, Singapore, Singapore
    For correspondence
    rakeshd68@yahoo.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Takahiro Sakaue

    Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0863-6682
  3. G V Shivashankar

    ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacques Prost

    Laboratoire Physico Chimie Curie, Institute Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Tetsuya Hiraiwa

    National University of Singapore, Singapore, Singapore
    For correspondence
    mbithi@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3221-345X

Funding

Mechanobiology Institute, Singapore (Seed grand)

  • Jacques Prost
  • Tetsuya Hiraiwa

Ministry of Education - Singapore (Tier 3 grant MOET32020-0001)

  • G V Shivashankar
  • Jacques Prost
  • Tetsuya Hiraiwa

Japan Society for the Promotion of Science (KAKENHI JP18H05529)

  • Takahiro Sakaue

Ministry of Education, Culture, Sports, Science and Technology (JP21H05759)

  • Takahiro Sakaue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Preprint posted: December 20, 2021 (view preprint)
  2. Received: May 2, 2022
  3. Accepted: December 6, 2022
  4. Accepted Manuscript published: December 6, 2022 (version 1)
  5. Version of Record published: January 3, 2023 (version 2)

Copyright

© 2022, Das et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,192
    Page views
  • 226
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rakesh Das
  2. Takahiro Sakaue
  3. G V Shivashankar
  4. Jacques Prost
  5. Tetsuya Hiraiwa
(2022)
How enzymatic activity is involved in chromatin organization
eLife 11:e79901.
https://doi.org/10.7554/eLife.79901

Share this article

https://doi.org/10.7554/eLife.79901

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Camille Morel, Eline Lemerle ... Emmanuel Lemichez
    Research Article

    Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.

    1. Physics of Living Systems
    Davin Jeong, Guang Shi ... D Thirumalai
    Research Article

    Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are present even without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer–promoter/promoter–promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.