Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1

Abstract

The secreted protein Isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53 % overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~ 450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this anti-diabetic circulating protein controls muscle biology.

Data availability

The phosphoproteomics dataset has been deposited to ProteomeXchange Consortium through JPost PXD031719 (JPST001484)(Okuda et al., 2017). The code for all analysis related to phosphoproteomic data is available at https://github.com/Svensson-Lab/Isthmin-1/tree/F442A_phosphoproteomics. The single-cell RNA sequencing data was re-analyzed from a previously published dataset (Baht et al., 2020). All the other data generated or analyzed in this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Meng Zhao

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5415-8335
  2. Niels Banhos Dannieskiold-Samsøe

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Livia Ulicna

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Quennie Nguyen

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Laetitia Voilquin

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2138-4819
  6. David E Lee

    Duke Molecular Physiology Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James P White

    Duke Molecular Physiology Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zewen Jiang

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3852-8666
  9. Nickeisha Cuthbert

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shrika Paramasivam

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ewa Bielczyk-Maczynska

    Stanford Diabetes Research Center, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0558-1188
  12. Capucine Van Rechem

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5408-6124
  13. Katrin J Svensson

    Department of Pathology, Stanford University, Palo Alto, United States
    For correspondence
    katrinjs@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5376-5128

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK125260)

  • Katrin J Svensson

National Institute of Diabetes and Digestive and Kidney Diseases (DK111916)

  • Katrin J Svensson

American Heart Association (905674)

  • Meng Zhao

American Heart Association (18POST34030448)

  • Ewa Bielczyk-Maczynska

National Heart, Lung, and Blood Institute (T32HL007057)

  • David E Lee

American Heart Association (882082)

  • Nickeisha Cuthbert

National Institute of Diabetes and Digestive and Kidney Diseases (DK116074)

  • Katrin J Svensson

National Institute on Aging (R21AG065943)

  • James P White

NIH Office of the Director (K01AG05666)

  • James P White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed per procedures approved by the Institutional Animal Care and Use Committee of the Stanford Animal Care and Use Committee (APLAC) protocol number #32982.

Reviewing Editor

  1. Christopher Cardozo, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: May 5, 2022
  2. Preprint posted: May 25, 2022 (view preprint)
  3. Accepted: September 27, 2022
  4. Accepted Manuscript published: September 28, 2022 (version 1)
  5. Version of Record published: October 24, 2022 (version 2)

Copyright

© 2022, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,649
    Page views
  • 295
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meng Zhao
  2. Niels Banhos Dannieskiold-Samsøe
  3. Livia Ulicna
  4. Quennie Nguyen
  5. Laetitia Voilquin
  6. David E Lee
  7. James P White
  8. Zewen Jiang
  9. Nickeisha Cuthbert
  10. Shrika Paramasivam
  11. Ewa Bielczyk-Maczynska
  12. Capucine Van Rechem
  13. Katrin J Svensson
(2022)
Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1
eLife 11:e80014.
https://doi.org/10.7554/eLife.80014

Further reading

    1. Cell Biology
    2. Neuroscience
    Sotaro Ichinose, Yoshihiro Susuki ... Hirohide Iwasaki
    Research Article

    Neurons form dense neural circuits by connecting to each other via synapses and exchange information through synaptic receptors to sustain brain activities. Excitatory postsynapses form and mature on spines composed predominantly of actin, while inhibitory synapses are formed directly on the shafts of dendrites where both actin and microtubules (MTs) are present. Thus, it is the accumulation of specific proteins that characterizes inhibitory synapses. In this study, we explored the mechanisms that enable efficient protein accumulation at inhibitory postsynapse. We found that some inhibitory synapses function to recruit the plus end of MTs. One of the synaptic organizers, Teneurin-2 (TEN2), tends to localize to such MT-rich synapses and recruits MTs to inhibitory postsynapses via interaction with MT plus-end tracking proteins EBs. This recruitment mechanism provides a platform for the exocytosis of GABAA receptors. These regulatory mechanisms could lead to a better understanding of the pathogenesis of disorders such as schizophrenia and autism, which are caused by excitatory/inhibitory (E/I) imbalances during synaptogenesis.

    1. Cell Biology
    Qin Zou, Rong Yuan ... Yanzhi Jiang
    Research Article

    Different anatomical locations of the body skin show differences in their gene expression patterns depending on different origins, and the inherent heterogeneous information can be maintained in adults. However, highly resolvable cellular specialization is less well characterized in different anatomical regions of the skin. Pig is regarded as an excellent model animal for human skin research in view of its similar physiology to human. In this study, single-cell RNA sequencing was performed on pig skin tissues from six different anatomical regions of Chenghua (CH) pigs, with a superior skin thickness trait, and the back site of large white (LW) pigs. We obtained 233,715 cells, representing seven cell types, among which we primarily characterized the heterogeneity of the top three cell types, including smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts (FBs). Then, we further identified several subtypes of SMCs, ECs, and FBs, and discovered the expression patterns of site-specific genes involved in some important pathways such as the immune response and extracellular matrix (ECM) synthesis in different anatomical regions. By comparing differentially expressed genes of skin FBs among different anatomical regions, we considered TNN, COL11A1, and INHBA as candidate genes for facilitating ECM accumulation. These findings of heterogeneity in the main skin cell types from different anatomical sites will contribute to a better understanding of inherent skin information and place the potential focus on skin generation, transmission, and transplantation, paving the foundation for human skin priming.