Abstract

The secreted protein Isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53 % overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~ 450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this anti-diabetic circulating protein controls muscle biology.

Data availability

The phosphoproteomics dataset has been deposited to ProteomeXchange Consortium through JPost PXD031719 (JPST001484)(Okuda et al., 2017). The code for all analysis related to phosphoproteomic data is available at https://github.com/Svensson-Lab/Isthmin-1/tree/F442A_phosphoproteomics. The single-cell RNA sequencing data was re-analyzed from a previously published dataset (Baht et al., 2020). All the other data generated or analyzed in this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Meng Zhao

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5415-8335
  2. Niels Banhos Dannieskiold-Samsøe

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Livia Ulicna

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Quennie Nguyen

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Laetitia Voilquin

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2138-4819
  6. David E Lee

    Duke Molecular Physiology Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James P White

    Duke Molecular Physiology Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zewen Jiang

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3852-8666
  9. Nickeisha Cuthbert

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shrika Paramasivam

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ewa Bielczyk-Maczynska

    Stanford Diabetes Research Center, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0558-1188
  12. Capucine Van Rechem

    Department of Pathology, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5408-6124
  13. Katrin J Svensson

    Department of Pathology, Stanford University, Palo Alto, United States
    For correspondence
    katrinjs@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5376-5128

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK125260)

  • Katrin J Svensson

National Institute of Diabetes and Digestive and Kidney Diseases (DK111916)

  • Katrin J Svensson

American Heart Association (905674)

  • Meng Zhao

American Heart Association (18POST34030448)

  • Ewa Bielczyk-Maczynska

National Heart, Lung, and Blood Institute (T32HL007057)

  • David E Lee

American Heart Association (882082)

  • Nickeisha Cuthbert

National Institute of Diabetes and Digestive and Kidney Diseases (DK116074)

  • Katrin J Svensson

National Institute on Aging (R21AG065943)

  • James P White

NIH Office of the Director (K01AG05666)

  • James P White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed per procedures approved by the Institutional Animal Care and Use Committee of the Stanford Animal Care and Use Committee (APLAC) protocol number #32982.

Copyright

© 2022, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,674
    views
  • 406
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meng Zhao
  2. Niels Banhos Dannieskiold-Samsøe
  3. Livia Ulicna
  4. Quennie Nguyen
  5. Laetitia Voilquin
  6. David E Lee
  7. James P White
  8. Zewen Jiang
  9. Nickeisha Cuthbert
  10. Shrika Paramasivam
  11. Ewa Bielczyk-Maczynska
  12. Capucine Van Rechem
  13. Katrin J Svensson
(2022)
Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1
eLife 11:e80014.
https://doi.org/10.7554/eLife.80014

Share this article

https://doi.org/10.7554/eLife.80014

Further reading

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.