Neural signatures of auditory hypersensitivity following acoustic trauma

Abstract

Neurons in sensory cortex exhibit a remarkable capacity to maintain stable firing rates despite large fluctuations in afferent activity levels. However, sudden peripheral deafferentation in adulthood can trigger an excessive, non-homeostatic cortical compensatory response that may underlie perceptual disorders including sensory hypersensitivity, phantom limb pain, and tinnitus. Here, we show that mice with noise-induced damage of the high-frequency cochlear base were behaviorally hypersensitive to spared mid-frequency tones and to direct optogenetic stimulation of auditory thalamocortical neurons. Chronic 2-photon calcium imaging from ACtx pyramidal neurons (PyrNs) revealed an initial stage of spatially diffuse hyperactivity, hyper-correlation, and auditory hyperresponsivity that consolidated around deafferented map regions three or more days after acoustic trauma. Deafferented PyrN ensembles also displayed hypersensitive decoding of spared mid-frequency tones that mirrored behavioral hypersensitivity, suggesting that non-homeostatic regulation of cortical sound intensity coding following sensorineural loss may be an underlying source of auditory hypersensitivity. Excess cortical response gain after acoustic trauma was expressed heterogeneously among individual PyrNs, yet 40% of this variability could be accounted for by each cell's baseline response properties prior to acoustic trauma. PyrNs with initially high spontaneous activity and gradual monotonic intensity growth functions were more likely to exhibit non-homeostatic excess gain after acoustic trauma. This suggests that while cortical gain changes are triggered by reduced bottom-up afferent input, their subsequent stabilization is also shaped by their local circuit milieu, where indicators of reduced inhibition can presage pathological hyperactivity following sensorineural hearing loss.

Data availability

All Figure code and data will be available on the Harvard Dataverse at the following:doi:10.7910/DVN/JLIKOZ

The following data sets were generated

Article and author information

Author details

  1. Matthew McGill

    Division of Medical Sciences, Harvard Medical School, Boston, United States
    For correspondence
    mmcgill@g.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2322-9580
  2. Ariel E Hight

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yurika L Watanabe

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Aravindakshan Parthasarathy

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dongqin Cai

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kameron Clayton

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kenneth E Hancock

    Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anne Takesian

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sharon G Kujawa

    Department of Otolaryngology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel B Polley

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5120-2409

Funding

National Institute on Deafness and Other Communication Disorders (DC018974-02)

  • Matthew McGill

National Institute on Deafness and Other Communication Disorders (DC014871)

  • Ariel E Hight

Nancy Lurie Marks Family Foundation

  • Anne Takesian
  • Daniel B Polley

National Institute on Deafness and Other Communication Disorders (DC009836)

  • Daniel B Polley

National Institute on Deafness and Other Communication Disorders (DC015857)

  • Sharon G Kujawa
  • Daniel B Polley

National Institute on Deafness and Other Communication Disorders (DC018353)

  • Anne Takesian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Massachusetts Eye and Ear Animal Care and Use Committee and followed the guidelines established by the National Institute of Health for the care and use of laboratory animals.

Human subjects: The study was approved by the human subjects Institutional Review Board at Mass General Brigham and Massachusetts Eye and Ear. Data analysis was performed on de-identified data, in accordance with the relevant guidelines and regulations.

Copyright

© 2022, McGill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,053
    views
  • 330
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew McGill
  2. Ariel E Hight
  3. Yurika L Watanabe
  4. Aravindakshan Parthasarathy
  5. Dongqin Cai
  6. Kameron Clayton
  7. Kenneth E Hancock
  8. Anne Takesian
  9. Sharon G Kujawa
  10. Daniel B Polley
(2022)
Neural signatures of auditory hypersensitivity following acoustic trauma
eLife 11:e80015.
https://doi.org/10.7554/eLife.80015

Share this article

https://doi.org/10.7554/eLife.80015

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Megan E Farquhar, Qianqian Yang, Viktor Vegh
    Research Article

    Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning, and monitoring of many neurological diseases and disorders. However, robust, fast, and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum b-value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion-based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast, and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion-weighted magnetic resonance imaging data acquisition time.

    1. Neuroscience
    Larissa Höfling, Klaudia P Szatko ... Thomas Euler
    Research Article

    The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes in visual context. We trained a convolutional neural network (CNN) model on large-scale functional recordings of RGC responses to natural mouse movies, and then used this model to search in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is being debated. We confirmed experimentally that these cells indeed responded very selectively to Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our work showcases how a combination of experiments with natural stimuli and computational modelling allows discovering novel types of stimulus selectivity and identifying their potential ethological relevance.