Distinct regions of H. pylori's bactofilin CcmA regulate protein-protein interactions to control helical cell shape

  1. Sophie R Sichel
  2. Benjamin P Bratton
  3. Nina Reda Salama  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. Vanderbilt University Medical Center, United States

Abstract

The helical shape of H. pylori cells promotes robust stomach colonization, however, how the helical shape of H. pylori cells is determined is unresolved. Previous work identified helical-cell-shape-promoting protein complexes containing a peptidoglycan-hydrolase (Csd1), a peptidoglycan precursor synthesis enzyme (MurF), a non-enzymatic homologue of Csd1 (Csd2), non-enzymatic transmembrane proteins (Csd5 and Csd7), and a bactofilin (CcmA). Bactofilins are highly conserved, spontaneously polymerizing cytoskeletal bacterial proteins. We sought to understand CcmA's function in generating the helical shape of H. pylori cells. Using CcmA deletion analysis, in vitro polymerization, and in vivo co-immunoprecipitation experiments we identified that the bactofilin domain and N-terminal region of CcmA are required for helical cell shape and the bactofilin domain of CcmA is sufficient for polymerization and interactions with Csd5 and Csd7. We also found that CcmA's N-terminal region inhibits interaction with Csd7. Deleting the N-terminal region of CcmA increases CcmA-Csd7 interactions and destabilizes the peptidoglycan-hydrolase Csd1. Using super-resolution microscopy, we found that Csd5 recruits CcmA to the cell envelope and promotes CcmA enrichment at the major helical axis. Thus, CcmA helps organize cell-shape-determining proteins and peptidoglycan synthesis machinery to coordinate cell wall modification and synthesis, promoting the curvature required to build a helical cell.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 2, 5, 6 and 7.Microscopy data are available at BioImage Archive and accession code is S-BIAD462

The following data sets were generated

Article and author information

Author details

  1. Sophie R Sichel

    Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin P Bratton

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1128-2560
  3. Nina Reda Salama

    Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    nsalama@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2762-1424

Funding

National Institute of Allergy and Infectious Diseases (F31 AI152331)

  • Sophie R Sichel

National Institute of Allergy and Infectious Diseases (R01 AI136946)

  • Nina Reda Salama

National Institute of General Medical Sciences (T32 GM95421)

  • Sophie R Sichel

GO-MAP Graduat Opportunity Program Research Assistantship Award (Sophie Sichel)

  • Sophie R Sichel

VUMC Discovery Scholars in Health and Medicine Program (Benjamin Bratton)

  • Benjamin P Bratton

National Cancer Institute (P31 CA015704)

  • Nina Reda Salama

Audacious Project (Institute for Protein Design)

  • Sophie R Sichel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sichel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,501
    views
  • 238
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie R Sichel
  2. Benjamin P Bratton
  3. Nina Reda Salama
(2022)
Distinct regions of H. pylori's bactofilin CcmA regulate protein-protein interactions to control helical cell shape
eLife 11:e80111.
https://doi.org/10.7554/eLife.80111

Share this article

https://doi.org/10.7554/eLife.80111

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.