Distinct regions of H. pylori's bactofilin CcmA regulate protein-protein interactions to control helical cell shape

  1. Sophie R Sichel
  2. Benjamin P Bratton
  3. Nina Reda Salama  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. Vanderbilt University Medical Center, United States

Abstract

The helical shape of H. pylori cells promotes robust stomach colonization, however, how the helical shape of H. pylori cells is determined is unresolved. Previous work identified helical-cell-shape-promoting protein complexes containing a peptidoglycan-hydrolase (Csd1), a peptidoglycan precursor synthesis enzyme (MurF), a non-enzymatic homologue of Csd1 (Csd2), non-enzymatic transmembrane proteins (Csd5 and Csd7), and a bactofilin (CcmA). Bactofilins are highly conserved, spontaneously polymerizing cytoskeletal bacterial proteins. We sought to understand CcmA's function in generating the helical shape of H. pylori cells. Using CcmA deletion analysis, in vitro polymerization, and in vivo co-immunoprecipitation experiments we identified that the bactofilin domain and N-terminal region of CcmA are required for helical cell shape and the bactofilin domain of CcmA is sufficient for polymerization and interactions with Csd5 and Csd7. We also found that CcmA's N-terminal region inhibits interaction with Csd7. Deleting the N-terminal region of CcmA increases CcmA-Csd7 interactions and destabilizes the peptidoglycan-hydrolase Csd1. Using super-resolution microscopy, we found that Csd5 recruits CcmA to the cell envelope and promotes CcmA enrichment at the major helical axis. Thus, CcmA helps organize cell-shape-determining proteins and peptidoglycan synthesis machinery to coordinate cell wall modification and synthesis, promoting the curvature required to build a helical cell.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 2, 5, 6 and 7.Microscopy data are available at BioImage Archive and accession code is S-BIAD462

The following data sets were generated

Article and author information

Author details

  1. Sophie R Sichel

    Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin P Bratton

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1128-2560
  3. Nina Reda Salama

    Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    nsalama@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2762-1424

Funding

National Institute of Allergy and Infectious Diseases (F31 AI152331)

  • Sophie R Sichel

National Institute of Allergy and Infectious Diseases (R01 AI136946)

  • Nina Reda Salama

National Institute of General Medical Sciences (T32 GM95421)

  • Sophie R Sichel

GO-MAP Graduat Opportunity Program Research Assistantship Award (Sophie Sichel)

  • Sophie R Sichel

VUMC Discovery Scholars in Health and Medicine Program (Benjamin Bratton)

  • Benjamin P Bratton

National Cancer Institute (P31 CA015704)

  • Nina Reda Salama

Audacious Project (Institute for Protein Design)

  • Sophie R Sichel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Petra Anne Levin, Washington University in St. Louis, United States

Publication history

  1. Preprint posted: April 5, 2022 (view preprint)
  2. Received: May 9, 2022
  3. Accepted: September 7, 2022
  4. Accepted Manuscript published: September 8, 2022 (version 1)
  5. Version of Record published: September 23, 2022 (version 2)

Copyright

© 2022, Sichel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 852
    Page views
  • 174
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie R Sichel
  2. Benjamin P Bratton
  3. Nina Reda Salama
(2022)
Distinct regions of H. pylori's bactofilin CcmA regulate protein-protein interactions to control helical cell shape
eLife 11:e80111.
https://doi.org/10.7554/eLife.80111

Further reading

    1. Microbiology and Infectious Disease
    Leire Aguinagalde Salazar, Maurits A den Boer ... Suzan HM Rooijakkers
    Research Article

    Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and an important cause of childhood mortality. Despite the introduction of successful vaccines, the global spread of both non-vaccine serotypes and antibiotic-resistant strains reinforces the development of alternative therapies against this pathogen. One possible route is the development of monoclonal antibodies (mAbs) that induce killing of bacteria via the immune system. Here, we investigate whether mAbs can be used to induce killing of pneumococcal serotypes for which the current vaccines show unsuccessful protection. Our study demonstrates that when human mAbs against pneumococcal capsule polysaccharides (CPS) have a poor capacity to induce complement activation, a critical process for immune protection against pneumococci, their activity can be strongly improved by hexamerization-enhancing mutations. Our data indicate that anti-capsular antibodies may have a low capacity to form higher-order oligomers (IgG hexamers) that are needed to recruit complement component C1. Indeed, specific point mutations in the IgG-Fc domain that strengthen hexamerization strongly enhance C1 recruitment and downstream complement activation on encapsulated pneumococci. Specifically, hexamerization-enhancing mutations E430G or E345K in CPS6-IgG strongly potentiate complement activation on S. pneumoniae strains that express capsular serotype 6 (CPS6), and the highly invasive serotype 19A strain. Furthermore, these mutations improve complement activation via mAbs recognizing CPS3 and CPS8 strains. Importantly, hexamer-enhancing mutations enable mAbs to induce strong opsonophagocytic killing by human neutrophils. Finally, passive immunization with CPS6-IgG1-E345K protected mice from developing severe pneumonia. Altogether, this work provides an important proof of concept for future optimization of antibody therapies against encapsulated bacteria.

    1. Microbiology and Infectious Disease
    Ashelyn E Sidders, Katarzyna M Kedziora ... Brian P Conlon
    Research Article Updated

    Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.