Single-cell RNA sequencing analysis of shrimp immune cells identifies macrophage-like phagocytes

  1. Peng Yang
  2. Yaohui Chen
  3. Zhiqi Huang
  4. Huidan Xia
  5. Ling Cheng
  6. Hao Wu
  7. Yueling Zhang
  8. Fan Wang  Is a corresponding author
  1. Shantou University, China
  2. Genedenovo Biotechnology Company Limited, China

Abstract

Despite the importance of innate immunity in invertebrates, the diversity and function of innate immune cells in invertebrates are largely unknown. Using single-cell RNA-seq, we identified prohemocytes, monocytic hemocytes, and granulocytes as the three major cell-types in the white shrimp hemolymph. Our results identified a novel macrophage-like subset called monocytic hemocytes 2 (MH2) defined by the expression of certain marker genes, including Nlrp3 and Casp1. This subtype of shrimp hemocytes is phagocytic and expresses markers that indicate some conservation with mammalian macrophages. Combined, our work resolves the heterogenicity of hemocytes in a very economically important aquatic species and identifies a novel innate immune cell subset that is likely a critical player in the immune responses of shrimp to threatening infectious diseases affecting this industry.

Data availability

The sequence data reported in this paper have been deposited in the Genome Sequence Archive of the Beijing Institute of Genomics, Chinese Academy of Sciences, gsa.big.ac.cn (accession no. PRJCA006297). All other data are available in this manuscript and online in the Supplementary Material.

The following data sets were generated

Article and author information

Author details

  1. Peng Yang

    Institute of Marine Sciences, Shantou University, Shantou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8298-8926
  2. Yaohui Chen

    Department of Biology, Shantou University, Shantou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4044-4373
  3. Zhiqi Huang

    Department of Biology, Shantou University, Shantou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Huidan Xia

    Department of Biology, Shantou University, Shantou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ling Cheng

    Genedenovo Biotechnology Company Limited, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hao Wu

    Genedenovo Biotechnology Company Limited, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yueling Zhang

    Institute of Marine Sciences, Shantou University, Shantou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Fan Wang

    Institute of Marine Sciences, Shantou University, Shantou, China
    For correspondence
    wangfan@stu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6059-6956

Funding

National Natural Science Foundation of China (41976123)

  • Fan Wang

Guangdong Science and Technology Department (14600703)

  • Fan Wang

Li Ka Shing Foundation (2020LKSFG01E)

  • Yueling Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the animal-related experiments were in accordance with Shantou University guidelines.

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,587
    views
  • 594
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peng Yang
  2. Yaohui Chen
  3. Zhiqi Huang
  4. Huidan Xia
  5. Ling Cheng
  6. Hao Wu
  7. Yueling Zhang
  8. Fan Wang
(2022)
Single-cell RNA sequencing analysis of shrimp immune cells identifies macrophage-like phagocytes
eLife 11:e80127.
https://doi.org/10.7554/eLife.80127

Share this article

https://doi.org/10.7554/eLife.80127

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Yuedan Wang, Ying Li ... Xuan Xiao
    Research Article

    Acute retinal ischemia and ischemia-reperfusion injury are the primary causes of retinal neural cell death and vision loss in retinal artery occlusion (RAO). The absence of an accurate mouse model for simulating the retinal ischemic process has hindered progress in developing neuroprotective agents for RAO. We developed a unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model using silicone wire embolization combined with carotid artery ligation. The survival of retinal ganglion cells and visual function were evaluated to determine the duration of ischemia. Immunofluorescence staining, optical coherence tomography, and haematoxylin and eosin staining were utilized to assess changes in major neural cell classes and retinal structure degeneration at two reperfusion durations. Transcriptomics was employed to investigate alterations in the pathological process of UPOAO following ischemia and reperfusion, highlighting transcriptomic differences between UPOAO and other retinal ischemia-reperfusion models. The UPOAO model successfully replicated the acute interruption of retinal blood supply observed in RAO. 60 min of Ischemia led to significant loss of major retinal neural cells and visual function impairment. Notable thinning of the inner retinal layer, especially the ganglion cell layer, was evident post-UPOAO. Temporal transcriptome analysis revealed various pathophysiological processes related to immune cell migration, oxidative stress, and immune inflammation during the non-reperfusion and reperfusion periods. A pronounced increase in microglia within the retina and peripheral leukocytes accessing the retina was observed during reperfusion periods. Comparison of differentially expressed genes (DEGs) between the UPOAO and high intraocular pressure models revealed specific enrichments in lipid and steroid metabolism-related genes in the UPOAO model. The UPOAO model emerges as a novel tool for screening pathogenic genes and promoting further therapeutic research in RAO.

    1. Cancer Biology
    2. Immunology and Inflammation
    Akashdip Singh, Alberto Miranda Bedate ... Linde Meyaard
    Research Article

    Despite major successes with inhibitory receptor blockade in cancer, the identification of novel inhibitory receptors as putative drug targets is needed due to lack of durable responses, therapy resistance, and side effects. Most inhibitory receptors signal via immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and previous studies estimated that our genome contains over 1600 ITIM-bearing transmembrane proteins. However, testing and development of these candidates requires increased understanding of their expression patterns and likelihood to function as inhibitory receptor. Therefore, we designed a novel bioinformatics pipeline integrating machine learning-guided structural predictions and sequence-based likelihood models to identify putative inhibitory receptors. Using transcriptomics data of immune cells, we determined the expression of these novel inhibitory receptors, and classified them into previously proposed functional categories. Known and putative inhibitory receptors were expressed across different immune cell subsets with cell type-specific expression patterns. Furthermore, putative immune inhibitory receptors were differentially expressed in subsets of tumour infiltrating T cells. In conclusion, we present an inhibitory receptor pipeline that identifies 51 known and 390 novel human inhibitory receptors. This pipeline will support future drug target selection across diseases where therapeutic targeting of immune inhibitory receptors is warranted.