Abstract

Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of b1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of b1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the b3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High resolution immunofluorescence and single molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to b-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.

Data availability

Sequencing data from this study has been deposited in the Gene Expression Omnibus (GEO) under the series accession number GSE207707. Scripts for data processing will be made available through GitHub (https://github.com/RBBurl1227).

The following data sets were generated

Article and author information

Author details

  1. Rayanne B Burl

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Ann Rondini

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hongguang Wei

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roger Pique-Regi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  5. James G Granneman

    Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, United States
    For correspondence
    jgranne@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7013-6630

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK062292)

  • James G Granneman

National Institute of Diabetes and Digestive and Kidney Diseases (F31-DK116536)

  • Rayanne B Burl

Funding sources were not involved in the study design, collection and/or interpretation of data, nor the decision to submit this work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Ethics

Animal experimentation: All animal protocols were approved and conducted in accordance with the Institutional Animal Care and Use Committee at Wayne State University (#16-03-055 and #19-03-1024).

Version history

  1. Received: May 11, 2022
  2. Preprint posted: May 23, 2022 (view preprint)
  3. Accepted: July 15, 2022
  4. Accepted Manuscript published: July 18, 2022 (version 1)
  5. Version of Record published: August 2, 2022 (version 2)

Copyright

© 2022, Burl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,531
    views
  • 613
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rayanne B Burl
  2. Elizabeth Ann Rondini
  3. Hongguang Wei
  4. Roger Pique-Regi
  5. James G Granneman
(2022)
Deconstructing cold-induced brown adipocyte neogenesis in mice
eLife 11:e80167.
https://doi.org/10.7554/eLife.80167

Share this article

https://doi.org/10.7554/eLife.80167

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.