Abstract

Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of b1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of b1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the b3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High resolution immunofluorescence and single molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to b-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.

Data availability

Sequencing data from this study has been deposited in the Gene Expression Omnibus (GEO) under the series accession number GSE207707. Scripts for data processing will be made available through GitHub (https://github.com/RBBurl1227).

The following data sets were generated

Article and author information

Author details

  1. Rayanne B Burl

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Ann Rondini

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hongguang Wei

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roger Pique-Regi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  5. James G Granneman

    Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, United States
    For correspondence
    jgranne@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7013-6630

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK062292)

  • James G Granneman

National Institute of Diabetes and Digestive and Kidney Diseases (F31-DK116536)

  • Rayanne B Burl

Funding sources were not involved in the study design, collection and/or interpretation of data, nor the decision to submit this work for publication.

Ethics

Animal experimentation: All animal protocols were approved and conducted in accordance with the Institutional Animal Care and Use Committee at Wayne State University (#16-03-055 and #19-03-1024).

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Version history

  1. Received: May 11, 2022
  2. Preprint posted: May 23, 2022 (view preprint)
  3. Accepted: July 15, 2022
  4. Accepted Manuscript published: July 18, 2022 (version 1)
  5. Version of Record published: August 2, 2022 (version 2)

Copyright

© 2022, Burl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,173
    Page views
  • 559
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rayanne B Burl
  2. Elizabeth Ann Rondini
  3. Hongguang Wei
  4. Roger Pique-Regi
  5. James G Granneman
(2022)
Deconstructing cold-induced brown adipocyte neogenesis in mice
eLife 11:e80167.
https://doi.org/10.7554/eLife.80167

Further reading

    1. Cell Biology
    Xiang Wang, Vitaliy V Bondar ... Anastasia G Henry
    Short Report Updated

    Leucine-rich repeat kinase 2 (LRRK2) variants associated with Parkinson’s disease (PD) and Crohn’s disease lead to increased phosphorylation of its Rab substrates. While it has been recently shown that perturbations in cellular homeostasis including lysosomal damage can increase LRRK2 activity and localization to lysosomes, the molecular mechanisms by which LRRK2 activity is regulated have remained poorly defined. We performed a targeted siRNA screen to identify regulators of LRRK2 activity and identified Rab12 as a novel modulator of LRRK2-dependent phosphorylation of one of its substrates, Rab10. Using a combination of imaging and immunopurification methods to isolate lysosomes, we demonstrated that Rab12 is actively recruited to damaged lysosomes and leads to a local and LRRK2-dependent increase in Rab10 phosphorylation. PD-linked variants, including LRRK2 R1441G and VPS35 D620N, lead to increased recruitment of LRRK2 to the lysosome and a local elevation in lysosomal levels of pT73 Rab10. Together, these data suggest a conserved mechanism by which Rab12, in response to damage or expression of PD-associated variants, facilitates the recruitment of LRRK2 and phosphorylation of its Rab substrate(s) at the lysosome.

    1. Cell Biology
    Herschel S Dhekne, Francesca Tonelli ... Suzanne R Pfeffer
    Research Advance Updated

    Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2-dependent and PPM1H phosphatase-reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. AlphaFold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain, and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.