Multivalency, autoinhibition, and protein disorder in the regulation of interactions of dynein intermediate chain with dynactin and the nuclear distribution protein

  1. Kayla A Jara
  2. Nikolaus M Loening
  3. Patrick N Reardon
  4. Zhen Yu
  5. Prajna Woonnimani
  6. Coban Brooks
  7. Cat H Vesely
  8. Elisar J Barbar  Is a corresponding author
  1. Oregon State University, United States
  2. Lewis and Clark College, United States

Abstract

As the only major retrograde transporter along microtubules, cytoplasmic dynein plays crucial roles in the intracellular transport of organelles and other cargoes. Central to the function of this motor protein complex is dynein intermediate chain (IC), which binds the three dimeric dynein light chains at multivalent sites, and dynactin p150Glued and nuclear distribution protein (NudE) at overlapping sites of its intrinsically disordered N-terminal domain. The disorder in IC has hindered cryo-electron microscopy and X-ray crystallography studies of its structure and interactions. Here we use a suite of biophysical methods to reveal how multivalent binding of the three light chains regulate IC interactions with p150Glued and NudE. Using IC from Chaetomium thermophilum, a tractable species to interrogate IC interactions, we identify a significant reduction in binding affinity of IC to p150Glued and a loss of binding to NudE for constructs containing the entire N-terminal domain as well as for full-length constructs when compared to the tight binding observed with short IC constructs. We attribute this difference to autoinhibition caused by long-range intramolecular interactions between the N-terminal single α-helix of IC, the common site for p150Glued and NudE binding, and residues closer to the end of the N-terminal domain. Reconstitution of IC subcomplexes demonstrate that autoinhibition is differentially regulated by light chains binding, underscoring their importance both in assembly and organization of IC, and in selection between multiple binding partners at the same site.

Data availability

Source data is included

Article and author information

Author details

  1. Kayla A Jara

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0406-2957
  2. Nikolaus M Loening

    Department of Chemistry, Lewis and Clark College, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5074-6906
  3. Patrick N Reardon

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhen Yu

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Prajna Woonnimani

    Department of Microbiology, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Coban Brooks

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cat H Vesely

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Elisar J Barbar

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    For correspondence
    Elisar.Barbar@oregonstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4892-5259

Funding

National Science Foundation (1617019)

  • Elisar J Barbar

National Science Foundation (2003557)

  • Nikolaus M Loening

National Institute of Biological Resources (1S10OD018518)

  • Elisar J Barbar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Jara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 981
    views
  • 158
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kayla A Jara
  2. Nikolaus M Loening
  3. Patrick N Reardon
  4. Zhen Yu
  5. Prajna Woonnimani
  6. Coban Brooks
  7. Cat H Vesely
  8. Elisar J Barbar
(2022)
Multivalency, autoinhibition, and protein disorder in the regulation of interactions of dynein intermediate chain with dynactin and the nuclear distribution protein
eLife 11:e80217.
https://doi.org/10.7554/eLife.80217

Share this article

https://doi.org/10.7554/eLife.80217

Further reading

    1. Structural Biology and Molecular Biophysics
    Andrew D Huber, Taosheng Chen
    Insight

    Complementary structural biology approaches reveal how an agonist and a covalent inhibitor simultaneously bind to a nuclear receptor.

    1. Structural Biology and Molecular Biophysics
    Lirong Zheng, Bingxin Zhou ... Liang Hong
    Short Report

    The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.