Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations

Abstract

Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here we show that unsaturated fatty acids (UFAs) act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.

Data availability

The raw numerical data for figures 1, 2, 3, 5, and 8 are provided in Source Data files for each figure.The full analysis code for Figure 4 is available on Github while all raw imaging data and key processed steps were deposited in Zenodo repository

The following data sets were generated

Article and author information

Author details

  1. Ashelyn E Sidders

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8700-261X
  2. Katarzyna M Kedziora

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  3. Melina Arts

    Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
    Competing interests
    No competing interests declared.
  4. Jan-Martin Daniel

    Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
    Competing interests
    No competing interests declared.
  5. Stefania de Benedetti

    Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
    Competing interests
    No competing interests declared.
  6. Jenna E Beam

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  7. Duyen T Bui

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  8. Joshua B Parsons

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  9. Tanja Schneider

    Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7269-4716
  10. Sarah E Rowe

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    Sarah E Rowe, is co-inventor on a provisional patent (WO2019018594A1) describing the use of membrane acting agents for potentiating antibiotic efficacy.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8955-359X
  11. Brian P Conlon

    Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    bconlon@med.unc.edu
    Competing interests
    Brian P Conlon, is co-inventor on a provisional patent (WO2019018594A1) describing the use of membrane acting agents for potentiating antibiotic efficacy.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2155-8375

Funding

National Institutes of Health (R01AI137273)

  • Brian P Conlon

Burroughs Wellcome Fund

  • Brian P Conlon

Cystic Fibrosis Foundation

  • Brian P Conlon

Deutsche Forschungsgemeinschaft

  • Tanja Schneider

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Sidders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,588
    views
  • 358
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashelyn E Sidders
  2. Katarzyna M Kedziora
  3. Melina Arts
  4. Jan-Martin Daniel
  5. Stefania de Benedetti
  6. Jenna E Beam
  7. Duyen T Bui
  8. Joshua B Parsons
  9. Tanja Schneider
  10. Sarah E Rowe
  11. Brian P Conlon
(2023)
Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations
eLife 12:e80246.
https://doi.org/10.7554/eLife.80246

Share this article

https://doi.org/10.7554/eLife.80246

Further reading

    1. Microbiology and Infectious Disease
    Yuqian Wang, Guibin Wang ... Xiangmin Lin
    Research Article

    Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ’s positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.

    1. Microbiology and Infectious Disease
    Jiadai Huang, Fang Chen ... Xin Deng
    Research Article

    Bacterial pathogens employ epigenetic mechanisms, including DNA methylation, to adapt to environmental changes, and these mechanisms play important roles in various biological processes. Pseudomonas syringae is a model phytopathogenic bacterium, but its methylome is less well known than that of other species. In this study, we conducted single-molecule real-time sequencing to profile the DNA methylation landscape in three model pathovars of P. syringae. We identified one Type I restriction–modification system (HsdMSR), including the conserved sequence motif associated with N6-methyladenine (6mA). About 25–40% of the genes involved in DNA methylation were conserved in two or more of the strains, revealing the functional conservation of methylation in P. syringae. Subsequent transcriptomic analysis highlighted the involvement of HsdMSR in virulent and metabolic pathways, including the Type III secretion system, biofilm formation, and translational efficiency. The regulatory effect of HsdMSR on transcription was dependent on both strands being fully 6mA methylated. Overall, this work illustrated the methylation profile in P. syringae and the critical involvement of DNA methylation in regulating virulence and metabolism. Thus, this work contributes to a deeper understanding of epigenetic transcriptional control in P. syringae and related bacteria.