State dependent coupling of hippocampal oscillations

  1. Brijesh Modi  Is a corresponding author
  2. Matteo Guardamagna
  3. Federico Stella
  4. Marilena Griguoli
  5. Enrico Cherubini
  6. Francesco P Battaglia  Is a corresponding author
  1. European Brain Research Institute, Italy
  2. Radboud University Nijmegen, Netherlands

Abstract

Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-varies simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multi-variate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness as compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines, for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.

Data availability

Datasets used in this study are available at Crcns.org (HC11 dataset) and Donders Repository (https://data.donders.ru.nl/collections/di/dcn/DSC_62002873_05_861)All codes are available made at https://github.com/brijeshmodi12/network_state_space

The following previously published data sets were used

Article and author information

Author details

  1. Brijesh Modi

    European Brain Research Institute, Rome, Italy
    For correspondence
    brijeshmodi12@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0360-1755
  2. Matteo Guardamagna

    Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Federico Stella

    Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Marilena Griguoli

    European Brain Research Institute, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4067-8927
  5. Enrico Cherubini

    European Brain Research Institute, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1183-2772
  6. Francesco P Battaglia

    Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    F.Battaglia@science.ru.nl
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Union Horizon 2020 research and innovation program MGATE (765549)

  • Francesco P Battaglia

European Union Horizon 2020 research and innovation (840704)

  • Federico Stella

ERC Advanced Grant (833964)

  • Francesco P Battaglia

Telethon (GGP16083)

  • Enrico Cherubini

Del Monte Foundation

  • Enrico Cherubini

EMBO short term fellowship (8464)

  • Brijesh Modi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In compliance with Dutch law and institutional regulations, all animal procedures concerningrecordings from freely moving or sleeping mice were approved by the Central Commissie Dierproeven(CCD) and conducted in accordance with the Experiments on Animals Act (project number 2016-014and protocol numbers 0029).All experiments from head-restrained animals were performed in accordance with the Italian AnimalWelfare legislation (D.L. 26/2014) that implemented the European Committee Council Directive(2010/63 EEC) and were approved by local veterinary authorities, the EBRI ethical committee, andthe Italian Ministry of Health (565/PR18) All efforts were made to minimize animal suffering and toreduce the number of animals used

Copyright

© 2023, Modi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,089
    views
  • 206
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brijesh Modi
  2. Matteo Guardamagna
  3. Federico Stella
  4. Marilena Griguoli
  5. Enrico Cherubini
  6. Francesco P Battaglia
(2023)
State dependent coupling of hippocampal oscillations
eLife 12:e80263.
https://doi.org/10.7554/eLife.80263

Share this article

https://doi.org/10.7554/eLife.80263

Further reading

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.