An essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria

  1. Kuldeepkumar R Gupta
  2. Celena M Gwin
  3. Kathryn C Rahlwes
  4. Kyle J Biegas
  5. Chunyan Wang
  6. Jin Ho Park
  7. Jun Liu
  8. Benjamin M Swarts
  9. Yasu S Morita
  10. E Hesper Rego  Is a corresponding author
  1. Yale University, United States
  2. University of Massachusetts Amherst, United States
  3. Central Michigan University, United States

Abstract

Mycobacteria, including the human pathogen Mycobacterium tuberculosis, grow by inserting new cell wall material at their poles. This process and that of division are asymmetric, producing a phenotypically heterogeneous population of cells that respond non-uniformly to stress (Aldridge et al., 2012; Rego et al., 2017; Richardson et al., 2016). Surprisingly, deletion of a single gene - lamA - leads to more symmetry, and to a population of cells that is more uniformly killed by antibiotics (Rego et al., 2017). How does LamA create asymmetry? Here, using a combination of quantitative time-lapse imaging, bacterial genetics, and lipid profiling, we find that LamA recruits essential proteins involved in cell wall synthesis to one side of the cell - the old pole. One of these proteins, MSMEG_0317, here renamed PgfA, was of unknown function. We show that PgfA is a periplasmic protein that interacts with MmpL3, an essential transporter that flips mycolic acids in the form of trehalose monomycolate (TMM), across the plasma membrane. PgfA interacts with a TMM analog suggesting a direct role in TMM transport. Yet our data point to a broader function as well, as cells with altered PgfA levels have differences in the abundance of other lipids and are differentially reliant on those lipids for survival. Overexpression of PgfA, but not MmpL3, restores growth at the old poles in cells missing lamA. Together, our results suggest that PgfA is a key determinant of polar growth and cell envelope composition in mycobacteria, and that the LamA-mediated recruitment of this protein to one side of the cell is a required step in the establishment of cellular asymmetry.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source Data files have been provided for blots, gels and TLC figures, and the Tn-seq data shown in Figure 4.

Article and author information

Author details

  1. Kuldeepkumar R Gupta

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Celena M Gwin

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kathryn C Rahlwes

    Department of Microbiology, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyle J Biegas

    Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chunyan Wang

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jin Ho Park

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jun Liu

    Department of Microbial Pathogenesis, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3108-6735
  8. Benjamin M Swarts

    Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yasu S Morita

    Department of Microbiology, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. E Hesper Rego

    Department of Microbial Pathogenesis, Yale University, New Haven, United States
    For correspondence
    hesper.rego@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2973-8354

Funding

National Institute of Allergy and Infectious Diseases (R01AI148255)

  • E Hesper Rego

National Science Foundation (1654408)

  • Benjamin M Swarts

National Institute of Allergy and Infectious Diseases (R01AI087946)

  • Jun Liu

National Institute of General Medical Sciences (R01GM110243)

  • Jun Liu

Pew Charitable Trusts

  • E Hesper Rego

Searle Scholars Program

  • E Hesper Rego

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,875
    views
  • 380
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kuldeepkumar R Gupta
  2. Celena M Gwin
  3. Kathryn C Rahlwes
  4. Kyle J Biegas
  5. Chunyan Wang
  6. Jin Ho Park
  7. Jun Liu
  8. Benjamin M Swarts
  9. Yasu S Morita
  10. E Hesper Rego
(2022)
An essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria
eLife 11:e80395.
https://doi.org/10.7554/eLife.80395

Share this article

https://doi.org/10.7554/eLife.80395

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.