The molecular basis of socially induced egg size plasticity in honey bees

  1. Bin Han
  2. Qiaohong Wei
  3. Esmaeil Amiri
  4. Han Hu
  5. Lifeng Meng
  6. Micheline K Strand
  7. David R Tarpy
  8. Shufa Xu
  9. Jianke Li  Is a corresponding author
  10. Olav Rueppell  Is a corresponding author
  1. Chinese Academy of Agricultural Sciences, China
  2. Mississippi State University, United States
  3. United States Army Research Office, United States
  4. North Carolina State University, United States
  5. University of Alberta, Canada

Abstract

Reproduction involves the investment of resources into offspring. Although variation in reproductive effort often affects the number of offspring, adjustments of propagule size are also found in numerous species, including the Western honey bee, Apis mellifera. However, the proximate causes of these adjustments are insufficiently understood, especially in oviparous species with complex social organization in which adaptive evolution is shaped by kin selection. Here, we show in a series of experiments that queens predictably and reversibly increase egg size in small colonies and decrease egg size in large colonies, while their ovary size changes in the opposite direction. Additional results suggest that these effects cannot solely explained by egg laying rate and are due to the queens' perception of colony size. Egg size plasticity is associated with quantitative changes of 290 ovarian proteins, most of which relate to energy metabolism, protein transport, and cytoskeleton. Based on functional and network analyses, we further study the small GTPase Rho1 as a candidate regulator of egg size. Spatio-temporal expression analysis via RNAscope® and qPCR supports an important role of Rho1 in egg size determination, and subsequent RNAi-mediated gene knock-down confirmed that Rho1 has a major effect on egg size in honey bees. These results elucidate how the social environment of the honey bee colony may be translated into a specific cellular process to adjust maternal investment into eggs. It remains to be studied how widespread this mechanism is and whether it has consequences for population dynamics and epigenetic influences on offspring phenotype in honey bees and other species.

Data availability

The LC−MS/MS data and search results were deposited in ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier IPX0002748002.All other data are provided as supplementary files.

The following data sets were generated

Article and author information

Author details

  1. Bin Han

    Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6974-8699
  2. Qiaohong Wei

    Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Esmaeil Amiri

    Delta Research and Extension Center, Mississippi State University, Stoneville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Han Hu

    Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lifeng Meng

    Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Micheline K Strand

    Biological and Biotechnology Sciences Branch, United States Army Research Office, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David R Tarpy

    Department of Applied Ecology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8601-6094
  8. Shufa Xu

    Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianke Li

    Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
    For correspondence
    apislijk@126.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9344-0886
  10. Olav Rueppell

    Department of Biological Sciences, University of Alberta, Edmonton, Canada
    For correspondence
    olav@ualberta.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5370-4229

Funding

National Natural Science Foundation of China (31970428)

  • Bin Han

China Scholarship Council (201903250009)

  • Bin Han

National Research Council (Postdoctoral Fellowship)

  • Esmaeil Amiri

Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2015-IAR)

  • Shufa Xu

Earmarked Fund for Modern Agro-industry Technology Research System (CARS-44)

  • Jianke Li

Army Research Office (W911NF1920161)

  • Olav Rueppell

Army Research Office (W911NF2210195)

  • Olav Rueppell

Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-03629)

  • Olav Rueppell

Alberta Beekeepers Commission

  • Olav Rueppell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,327
    views
  • 255
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bin Han
  2. Qiaohong Wei
  3. Esmaeil Amiri
  4. Han Hu
  5. Lifeng Meng
  6. Micheline K Strand
  7. David R Tarpy
  8. Shufa Xu
  9. Jianke Li
  10. Olav Rueppell
(2022)
The molecular basis of socially induced egg size plasticity in honey bees
eLife 11:e80499.
https://doi.org/10.7554/eLife.80499

Share this article

https://doi.org/10.7554/eLife.80499

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.