Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis

Abstract

Hyperosmolarity of the renal medulla is essential for urine concentration and water homeostasis. However, how renal medullary collecting duct (MCD) cells survive and function under harsh hyperosmotic stress remains unclear. Using RNA-Seq, we identified SLC38A2 as a novel osmoresponsive neutral amino acid transporter in MCD cells. Hyperosmotic stress-induced cell death in MCD cells occurred mainly via ferroptosis, and it was significantly attenuated by SLC38A2 overexpression but worsened by Slc38a2-gene deletion or silencing. Mechanistic studies revealed that the osmoprotective effect of SLC38A2 is dependent on the activation of mTORC1. Moreover, an in vivo study demonstrated that Slc38a2-knockout mice exhibited significantly increased medullary ferroptosis following water restriction. Collectively, these findings reveal that Slc38a2 is an important osmoresponsive gene in the renal medulla and provide novel insights into the critical role of SLC38A2 in protecting MCD cells from hyperosmolarity-induced ferroptosis via the mTORC1 signalling pathway.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE206476.All data analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-10 and Figures S1-11.Figure 1 - Source Data 1 and Figure 2 - Source Data 1 contain the numerical data used to generate the figures.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chunxiu Du

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    For correspondence
    chunxiu_du@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4152-4663
  2. Hu Xu

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1198-0932
  3. Cong Cao

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiahui Cao

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yufei Zhang

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Cong Zhang

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Rongfang Qiao

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Wenhua Ming

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yaqing Li

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Huiwen Ren

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6037-8561
  11. Xiaohui Cui

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhilin Luan

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Youfei Guan

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    For correspondence
    youfeiguan@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5231-0209
  14. Xiaoyan Zhang

    Health Science Center, East China Normal University, Shanghai, China
    For correspondence
    xyzhang@hsc.ecnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (82270703)

  • Xiaoyan Zhang

National Natural Science Foundation of China (81970606)

  • Xiaoyan Zhang

National Natural Science Foundation of China (81970595)

  • Youfei Guan

National Key Research and Development Program of China (2020YFC2005000)

  • Youfei Guan

East China Normal University (2022JKXYD03001)

  • Xiaoyan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The use of animals and the study protocols were reviewed and approved by the Animal Care and Use Review Committee of Dalian Medical University and the study conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (in Guide for the Care and Use of Laboratory Animals, th, Editor. 2011: Washington )

Copyright

© 2023, Du et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,919
    views
  • 345
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chunxiu Du
  2. Hu Xu
  3. Cong Cao
  4. Jiahui Cao
  5. Yufei Zhang
  6. Cong Zhang
  7. Rongfang Qiao
  8. Wenhua Ming
  9. Yaqing Li
  10. Huiwen Ren
  11. Xiaohui Cui
  12. Zhilin Luan
  13. Youfei Guan
  14. Xiaoyan Zhang
(2023)
Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis
eLife 12:e80647.
https://doi.org/10.7554/eLife.80647

Share this article

https://doi.org/10.7554/eLife.80647

Further reading

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.