Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis

Abstract

Hyperosmolarity of the renal medulla is essential for urine concentration and water homeostasis. However, how renal medullary collecting duct (MCD) cells survive and function under harsh hyperosmotic stress remains unclear. Using RNA-Seq, we identified SLC38A2 as a novel osmoresponsive neutral amino acid transporter in MCD cells. Hyperosmotic stress-induced cell death in MCD cells occurred mainly via ferroptosis, and it was significantly attenuated by SLC38A2 overexpression but worsened by Slc38a2-gene deletion or silencing. Mechanistic studies revealed that the osmoprotective effect of SLC38A2 is dependent on the activation of mTORC1. Moreover, an in vivo study demonstrated that Slc38a2-knockout mice exhibited significantly increased medullary ferroptosis following water restriction. Collectively, these findings reveal that Slc38a2 is an important osmoresponsive gene in the renal medulla and provide novel insights into the critical role of SLC38A2 in protecting MCD cells from hyperosmolarity-induced ferroptosis via the mTORC1 signalling pathway.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE206476.All data analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-10 and Figures S1-11.Figure 1 - Source Data 1 and Figure 2 - Source Data 1 contain the numerical data used to generate the figures.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chunxiu Du

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    For correspondence
    chunxiu_du@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4152-4663
  2. Hu Xu

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1198-0932
  3. Cong Cao

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiahui Cao

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yufei Zhang

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Cong Zhang

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Rongfang Qiao

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Wenhua Ming

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yaqing Li

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Huiwen Ren

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6037-8561
  11. Xiaohui Cui

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhilin Luan

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Youfei Guan

    Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
    For correspondence
    youfeiguan@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5231-0209
  14. Xiaoyan Zhang

    Health Science Center, East China Normal University, Shanghai, China
    For correspondence
    xyzhang@hsc.ecnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (82270703)

  • Xiaoyan Zhang

National Natural Science Foundation of China (81970606)

  • Xiaoyan Zhang

National Natural Science Foundation of China (81970595)

  • Youfei Guan

National Key Research and Development Program of China (2020YFC2005000)

  • Youfei Guan

East China Normal University (2022JKXYD03001)

  • Xiaoyan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark L Zeidel, Beth Israel Deaconess Medical Center, United States

Ethics

Animal experimentation: The use of animals and the study protocols were reviewed and approved by the Animal Care and Use Review Committee of Dalian Medical University and the study conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (in Guide for the Care and Use of Laboratory Animals, th, Editor. 2011: Washington )

Version history

  1. Received: May 28, 2022
  2. Accepted: January 31, 2023
  3. Accepted Manuscript published: February 1, 2023 (version 1)
  4. Version of Record published: February 23, 2023 (version 2)

Copyright

© 2023, Du et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,365
    views
  • 279
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chunxiu Du
  2. Hu Xu
  3. Cong Cao
  4. Jiahui Cao
  5. Yufei Zhang
  6. Cong Zhang
  7. Rongfang Qiao
  8. Wenhua Ming
  9. Yaqing Li
  10. Huiwen Ren
  11. Xiaohui Cui
  12. Zhilin Luan
  13. Youfei Guan
  14. Xiaoyan Zhang
(2023)
Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis
eLife 12:e80647.
https://doi.org/10.7554/eLife.80647

Share this article

https://doi.org/10.7554/eLife.80647

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.