Abstract

Osteoarthritis is the most common joint disease in the world with significant societal consequences, but lacks effective disease modifying interventions. The pathophysiology consists of a prominent inflammatory component that can be targeted to prevent cartilage degradation and structural defects. Intracellular metabolism has emerged as a culprit of the inflammatory response in chondrocytes, with both processes co-regulating each other. The role of glutamine metabolism in chondrocytes, especially in the context of inflammation, lacks a thorough understanding and is the focus of this work. We display that mouse chondrocytes utilize glutamine for energy production and anabolic processes. Furthermore, we show that glutamine deprivation itself causes metabolic reprogramming and decreases the inflammatory response of chondrocytes through inhibition of NF-κB activity. Finally, we display that glutamine deprivation promotes autophagy and that ammonia is an inhibitor of autophagy. Overall, we identify a relationship between glutamine metabolism and inflammatory signaling and display the need for increased study of chondrocyte metabolic systems.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. Source data have been provided for all figures

Article and author information

Author details

  1. Manoj Arra

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Gaurav Swarnkar

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Naga Suresh Adapala

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Syeda-Kanwal Batool Naqvi

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Lei Cai

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Muhammad Farooq Rai

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4826-4331
  7. Srikanth Singamaneni

    Department of Mechanical Engineering and Material Sciences, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
  8. Gabriel Mbalaviele

    Bone and Mineral Division, Washington University Medical Center, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4660-0952
  9. Robert Brophy

    Department of Orthopaedic Surgery, Washington University Medical Center, Saint Louis, United States
    Competing interests
    No competing interests declared.
  10. Yousef Abu-Amer

    Department of Orthopaedic Surgery, Washington University Medical Center, St Louis, United States
    For correspondence
    abuamery@wustl.edu
    Competing interests
    Yousef Abu-Amer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5890-5086

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR072623)

  • Yousef Abu-Amer

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR074992)

  • Yousef Abu-Amer

Shriners Hospitals for Children (85160-STL-20)

  • Yousef Abu-Amer

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR076758)

  • Gabriel Mbalaviele

National Institutes of Health (AI161022)

  • Gabriel Mbalaviele

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#21-0413) of Washington University. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Arra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,964
    views
  • 398
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manoj Arra
  2. Gaurav Swarnkar
  3. Naga Suresh Adapala
  4. Syeda-Kanwal Batool Naqvi
  5. Lei Cai
  6. Muhammad Farooq Rai
  7. Srikanth Singamaneni
  8. Gabriel Mbalaviele
  9. Robert Brophy
  10. Yousef Abu-Amer
(2022)
Glutamine metabolism modulates chondrocyte inflammatory response
eLife 11:e80725.
https://doi.org/10.7554/eLife.80725

Share this article

https://doi.org/10.7554/eLife.80725

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.