Zbtb14 regulates monocyte and macrophage development through inhibiting pu.1 expression in zebrafish

  1. Yun Deng
  2. Haihong Wang
  3. Xiaohui Liu
  4. Hao Yuan
  5. Jin Xu
  6. Hugues de Thé
  7. Jun Zhou  Is a corresponding author
  8. Jun Zhu  Is a corresponding author
  1. Shanghai Jiao Tong University, China
  2. South China University of Technology, China
  3. Inserm, France

Abstract

Macrophages and their precursor cells, monocytes, are the first line of defense of the body against foreign pathogens and tissue damage. Although the origins of macrophages are diverse, some common transcription factors (such as PU.1) are required to ensure proper development of monocytes/macrophages. Here we report that the deficiency of zbtb14, a transcription repressor gene belonging to ZBTB family, leads to an aberrant expansion of monocyte/macrophage population in zebrafish. Mechanistically, Zbtb14 functions as a negative regulator of pu.1, and SUMOylation on a conserved lysine is essential for the repression activity of Zbtb14. Moreover, a serine to phenylalanine mutation found in an acute myeloid leukemia (AML) patient could target ZBTB14 protein to autophagic degradation. Hence, ZBTB14 is a newly identified gene implicated in both normal and malignant myelopoiesis.

Data availability

RNA sequencing dataset generated in this study was deposited with Dryad-https://doi.org/10.5061/dryad.9cnp5hqms.

The following data sets were generated
    1. Deng Y
    2. Wang H
    3. Liu X
    4. Yuan H
    5. Xu J
    6. de Thé H
    7. Zhou J
    8. Zhu J
    (2022) RNA SEQ
    Dryad Digital Repository, doi:10.5061/dryad.9cnp5hqms.

Article and author information

Author details

  1. Yun Deng

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Haihong Wang

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaohui Liu

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hao Yuan

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jin Xu

    Division of Cell, Developmental and Integrative Biology, South China University of Technology, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6840-1359
  6. Hugues de Thé

    UMR 1050, Inserm, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jun Zhou

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    zj10802@rjh.com.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0472-3188
  8. Jun Zhu

    CNRS-LIA Hematology and Cancer, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    zhuj1966@yahoo.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7983-3130

Funding

National Natural Science Foundation of China (NO.32171097)

  • Jun Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Ethics StatementThe study was approved by the Ethics Committee of Rui Jin Hospital Affiliated toShanghai Jiao Tong University School of Medicine. Zebrafish experimental procedures were conducted in accordance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong University (2020-3#).

Reviewing Editor

  1. Florent Ginhoux, Agency for Science Technology and Research, Singapore

Publication history

  1. Received: June 3, 2022
  2. Preprint posted: July 4, 2022 (view preprint)
  3. Accepted: October 6, 2022
  4. Accepted Manuscript published: October 7, 2022 (version 1)
  5. Version of Record published: October 14, 2022 (version 2)
  6. Version of Record updated: October 18, 2022 (version 3)

Copyright

© 2022, Deng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 477
    Page views
  • 136
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yun Deng
  2. Haihong Wang
  3. Xiaohui Liu
  4. Hao Yuan
  5. Jin Xu
  6. Hugues de Thé
  7. Jun Zhou
  8. Jun Zhu
(2022)
Zbtb14 regulates monocyte and macrophage development through inhibiting pu.1 expression in zebrafish
eLife 11:e80760.
https://doi.org/10.7554/eLife.80760

Further reading

    1. Developmental Biology
    Arun Devotta, Hugo Juraver-Geslin ... Jean-Pierre Saint-Jeannet
    Research Article Updated

    Natriuretic peptide signaling has been implicated in a broad range of physiological processes, regulating blood volume and pressure, ventricular hypertrophy, fat metabolism, and long bone growth. Here, we describe a completely novel role for natriuretic peptide signaling in the control of neural crest (NC) and cranial placode (CP) progenitors formation. Among the components of this signaling pathway, we show that natriuretic peptide receptor 3 (Npr3) plays a pivotal role by differentially regulating two developmental programs through its dual function as clearance and signaling receptor. Using a combination of MO-based knockdowns, pharmacological inhibitors and rescue assays we demonstrate that Npr3 cooperate with guanylate cyclase natriuretic peptide receptor 1 (Npr1) and natriuretic peptides (Nppa/Nppc) to regulate NC and CP formation, pointing at a broad requirement of this signaling pathway in early embryogenesis. We propose that Npr3 acts as a clearance receptor to regulate local concentrations of natriuretic peptides for optimal cGMP production through Npr1 activation, and as a signaling receptor to control cAMP levels through inhibition of adenylyl cyclase. The intracellular modulation of these second messengers therefore participates in the segregation of NC and CP cell populations.

    1. Developmental Biology
    2. Evolutionary Biology
    Joaquín Letelier, Lorena Buono ... Juan R Martínez-Morales
    Research Article

    Genetic studies in human and mice have established a dual role for Vsx genes in retina development: an early function in progenitors’ specification, and a later requirement for bipolar-cells fate determination. Despite their conserved expression patterns, it is currently unclear to which extent Vsx functions are also conserved across vertebrates, as mutant models are available only in mammals. To gain insight into vsx function in teleosts, we have generated vsx1 and vsx2 CRISPR/Cas9 double knockouts (vsxKO) in zebrafish. Our electrophysiological and histological analyses indicate severe visual impairment and bipolar cells depletion in vsxKO larvae, with retinal precursors being rerouted toward photoreceptor or Müller glia fates. Surprisingly, neural retina is properly specified and maintained in mutant embryos, which do not display microphthalmia. We show that although important cis-regulatory remodelling occurs in vsxKO retinas during early specification, this has little impact at a transcriptomic level. Our observations point to genetic redundancy as an important mechanism sustaining the integrity of the retinal specification network, and to Vsx genes regulatory weight varying substantially among vertebrate species.