Zbtb14 regulates monocyte and macrophage development through inhibiting pu.1 expression in zebrafish

  1. Yun Deng
  2. Haihong Wang
  3. Xiaohui Liu
  4. Hao Yuan
  5. Jin Xu
  6. Hugues de Thé
  7. Jun Zhou  Is a corresponding author
  8. Jun Zhu  Is a corresponding author
  1. Shanghai Jiao Tong University, China
  2. South China University of Technology, China
  3. Inserm, France

Abstract

Macrophages and their precursor cells, monocytes, are the first line of defense of the body against foreign pathogens and tissue damage. Although the origins of macrophages are diverse, some common transcription factors (such as PU.1) are required to ensure proper development of monocytes/macrophages. Here we report that the deficiency of zbtb14, a transcription repressor gene belonging to ZBTB family, leads to an aberrant expansion of monocyte/macrophage population in zebrafish. Mechanistically, Zbtb14 functions as a negative regulator of pu.1, and SUMOylation on a conserved lysine is essential for the repression activity of Zbtb14. Moreover, a serine to phenylalanine mutation found in an acute myeloid leukemia (AML) patient could target ZBTB14 protein to autophagic degradation. Hence, ZBTB14 is a newly identified gene implicated in both normal and malignant myelopoiesis.

Data availability

RNA sequencing dataset generated in this study was deposited with Dryad-https://doi.org/10.5061/dryad.9cnp5hqms.

The following data sets were generated
    1. Deng Y
    2. Wang H
    3. Liu X
    4. Yuan H
    5. Xu J
    6. de Thé H
    7. Zhou J
    8. Zhu J
    (2022) RNA SEQ
    Dryad Digital Repository, doi:10.5061/dryad.9cnp5hqms.

Article and author information

Author details

  1. Yun Deng

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Haihong Wang

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaohui Liu

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hao Yuan

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jin Xu

    Division of Cell, Developmental and Integrative Biology, South China University of Technology, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6840-1359
  6. Hugues de Thé

    UMR 1050, Inserm, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jun Zhou

    Shanghai Institute of Hematology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    zj10802@rjh.com.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0472-3188
  8. Jun Zhu

    CNRS-LIA Hematology and Cancer, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    zhuj1966@yahoo.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7983-3130

Funding

National Natural Science Foundation of China (NO.32171097)

  • Jun Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Ethics StatementThe study was approved by the Ethics Committee of Rui Jin Hospital Affiliated toShanghai Jiao Tong University School of Medicine. Zebrafish experimental procedures were conducted in accordance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong University (2020-3#).

Copyright

© 2022, Deng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 993
    views
  • 218
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yun Deng
  2. Haihong Wang
  3. Xiaohui Liu
  4. Hao Yuan
  5. Jin Xu
  6. Hugues de Thé
  7. Jun Zhou
  8. Jun Zhu
(2022)
Zbtb14 regulates monocyte and macrophage development through inhibiting pu.1 expression in zebrafish
eLife 11:e80760.
https://doi.org/10.7554/eLife.80760

Share this article

https://doi.org/10.7554/eLife.80760

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.