Prolonged nicotine exposure reduces aversion to the drug in mice by altering nicotinic transmission in the interpeduncular nucleus

Abstract

Nicotine intake is likely to result from a balance between the rewarding and aversive properties of the drug, yet the individual differences in neural activity that control aversion to nicotine and their adaptation during the addiction process remain largely unknown. Using a two-bottle choice experiment, we observed considerable heterogeneity in nicotine-drinking profiles in isogenic adult male mice, with about half of the mice persisting in nicotine consumption even at high concentrations, whereas the other half stopped consuming. We found that nicotine intake was negatively correlated with nicotine-evoked currents in the interpeduncular nucleus (IPN), and that prolonged exposure to nicotine, by weakening this response, decreased aversion to the drug, and hence boosted consumption. Lastly, using knock-out mice and local gene re-expression, we identified b4-containing nicotinic acetylcholine receptors of IPN neurons as molecular and cellular correlates of nicotine aversion. Collectively, our results identify the IPN as a substrate for individual variabilities and adaptations in nicotine consumption.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data have been provided for all the figures.

Article and author information

Author details

  1. Sarah Mondoloni

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6134-3715
  2. Claire Nguyen

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0347-3626
  3. Eléonore Vicq

    Brain Plasticity Unit, ESPCI Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Ciscato

    Brain Plasticity Unit, ESPCI Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Joachim Jehl

    Brain Plasticity Unit, ESPCI Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9821-7619
  6. Romain Durand-de Cuttoli

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicolas Torquet

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9032-193X
  8. Stefania Tolu

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stéphanie Pons

    Département de neuroscience, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Uwe Maskos

    Département de neuroscience, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Fabio Marti

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Philippe Faure

    Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, INSERM, CNRS, Paris, France
    For correspondence
    phfaure@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3573-4971
  13. Alexandre Mourot

    Brain Plasticity Unit, ESPCI Paris, Paris, France
    For correspondence
    almourot@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8839-7481

Funding

Agence Nationale de la Recherche (ANR-21-CE16-0012 CHOLHAB)

  • Alexandre Mourot

Labex Biopsy

  • Claire Nguyen

Labex Memolife

  • Joachim Jehl

Labex Memolife

  • Alexandre Mourot

Agence Nationale de la Recherche (ANR-17-CE16-0016 SNP-NIC)

  • Philippe Faure

Fondation pour la Recherche Médicale (FRM EQU201903007961)

  • Philippe Faure

Institut National Du Cancer (TABAC-16-022)

  • Philippe Faure

Institut National Du Cancer (TABAC-19-02)

  • Philippe Faure

Institut National Du Cancer (SPA-21-002)

  • Philippe Faure

Fondation de France (Prix Médisite)

  • Alexandre Mourot

Fondation pour la Recherche Médicale (FDT201904008060)

  • Sarah Mondoloni

Fondation pour la Recherche Médicale (FDT20170437427)

  • Romain Durand-de Cuttoli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lan Ma, Fudan University, China

Ethics

Animal experimentation: All experiments were performed in accordance with the recommendations for animal experiments issued by the European Commission directives 219/1990, 220/1990 and 2010/63, and approved by Sorbonne Université.

Version history

  1. Preprint posted: December 17, 2021 (view preprint)
  2. Received: June 3, 2022
  3. Accepted: May 29, 2023
  4. Accepted Manuscript published: May 30, 2023 (version 1)
  5. Version of Record published: June 9, 2023 (version 2)

Copyright

© 2023, Mondoloni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 755
    views
  • 140
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Mondoloni
  2. Claire Nguyen
  3. Eléonore Vicq
  4. Maria Ciscato
  5. Joachim Jehl
  6. Romain Durand-de Cuttoli
  7. Nicolas Torquet
  8. Stefania Tolu
  9. Stéphanie Pons
  10. Uwe Maskos
  11. Fabio Marti
  12. Philippe Faure
  13. Alexandre Mourot
(2023)
Prolonged nicotine exposure reduces aversion to the drug in mice by altering nicotinic transmission in the interpeduncular nucleus
eLife 12:e80767.
https://doi.org/10.7554/eLife.80767

Share this article

https://doi.org/10.7554/eLife.80767

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.