Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons

  1. Zinan Wang  Is a corresponding author
  2. Joseph P Receveur
  3. Jian Pu
  4. Haosu Cong
  5. Cole Richards
  6. Muxuan Liang
  7. Henry Chung  Is a corresponding author
  1. Michigan State University, United States
  2. University of Florida, United States

Abstract

Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting source data file. Code used is uploaded as source code 1-3.

Article and author information

Author details

  1. Zinan Wang

    Department of Entomology, Michigan State University, East Lansing, United States
    For correspondence
    wangzina@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0509-4902
  2. Joseph P Receveur

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jian Pu

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Haosu Cong

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cole Richards

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Muxuan Liang

    Department of Biostatistics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Henry Chung

    Department of Entomology, Michigan State University, East Lansing, United States
    For correspondence
    hwchung@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5056-2755

Funding

National Science Foundation (2054773)

  • Henry Chung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,218
    views
  • 431
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zinan Wang
  2. Joseph P Receveur
  3. Jian Pu
  4. Haosu Cong
  5. Cole Richards
  6. Muxuan Liang
  7. Henry Chung
(2022)
Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons
eLife 11:e80859.
https://doi.org/10.7554/eLife.80859

Share this article

https://doi.org/10.7554/eLife.80859

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.